Loading…
A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge
This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthet...
Saved in:
Published in: | arXiv.org 2023-06 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Merkofer, Julian P Dennis M J van de Sande Amirrajab, Sina Drenthen, Gerhard S Mitko Veta Jansen, Jacobus F A Breeuwer, Marcel Ruud J G van Sloun |
description | This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthetic as well as in-vivo scenarios. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2822885928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822885928</sourcerecordid><originalsourceid>FETCH-proquest_journals_28228859283</originalsourceid><addsrcrecordid>eNqNjcEKwjAQBYMgWLT_sOBZqFur8VhrRUEvrZ4l1NVGQlKTVNSvV8EP8PRgGOZ1WIBxPB7xCWKPhc5doyjC6QyTJA6YTmFJ1MCWhNVSXyBtGmtEVcPBSyVfX5SZu7BS6IpgJ7yVD0i1UE8nHZyNBV8TbMrFBvKT9HSCXVFCQZXRztu28tJoyGqhFOkLDVj3LJSj8Ld9Nlzl-2w9-pzeWnL-eDWt_dTdETki58kcefyf9QZ7FEkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822885928</pqid></control><display><type>article</type><title>A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge</title><source>Publicly Available Content Database</source><creator>Merkofer, Julian P ; Dennis M J van de Sande ; Amirrajab, Sina ; Drenthen, Gerhard S ; Mitko Veta ; Jansen, Jacobus F A ; Breeuwer, Marcel ; Ruud J G van Sloun</creator><creatorcontrib>Merkofer, Julian P ; Dennis M J van de Sande ; Amirrajab, Sina ; Drenthen, Gerhard S ; Mitko Veta ; Jansen, Jacobus F A ; Breeuwer, Marcel ; Ruud J G van Sloun</creatorcontrib><description>This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthetic as well as in-vivo scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Covariance matrix ; Deep learning ; Machine learning ; Magnetic resonance spectroscopy ; Matrix methods</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2822885928?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Merkofer, Julian P</creatorcontrib><creatorcontrib>Dennis M J van de Sande</creatorcontrib><creatorcontrib>Amirrajab, Sina</creatorcontrib><creatorcontrib>Drenthen, Gerhard S</creatorcontrib><creatorcontrib>Mitko Veta</creatorcontrib><creatorcontrib>Jansen, Jacobus F A</creatorcontrib><creatorcontrib>Breeuwer, Marcel</creatorcontrib><creatorcontrib>Ruud J G van Sloun</creatorcontrib><title>A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge</title><title>arXiv.org</title><description>This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthetic as well as in-vivo scenarios.</description><subject>Covariance matrix</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Magnetic resonance spectroscopy</subject><subject>Matrix methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcEKwjAQBYMgWLT_sOBZqFur8VhrRUEvrZ4l1NVGQlKTVNSvV8EP8PRgGOZ1WIBxPB7xCWKPhc5doyjC6QyTJA6YTmFJ1MCWhNVSXyBtGmtEVcPBSyVfX5SZu7BS6IpgJ7yVD0i1UE8nHZyNBV8TbMrFBvKT9HSCXVFCQZXRztu28tJoyGqhFOkLDVj3LJSj8Ld9Nlzl-2w9-pzeWnL-eDWt_dTdETki58kcefyf9QZ7FEkE</recordid><startdate>20230605</startdate><enddate>20230605</enddate><creator>Merkofer, Julian P</creator><creator>Dennis M J van de Sande</creator><creator>Amirrajab, Sina</creator><creator>Drenthen, Gerhard S</creator><creator>Mitko Veta</creator><creator>Jansen, Jacobus F A</creator><creator>Breeuwer, Marcel</creator><creator>Ruud J G van Sloun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230605</creationdate><title>A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge</title><author>Merkofer, Julian P ; Dennis M J van de Sande ; Amirrajab, Sina ; Drenthen, Gerhard S ; Mitko Veta ; Jansen, Jacobus F A ; Breeuwer, Marcel ; Ruud J G van Sloun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28228859283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Covariance matrix</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Magnetic resonance spectroscopy</topic><topic>Matrix methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Merkofer, Julian P</creatorcontrib><creatorcontrib>Dennis M J van de Sande</creatorcontrib><creatorcontrib>Amirrajab, Sina</creatorcontrib><creatorcontrib>Drenthen, Gerhard S</creatorcontrib><creatorcontrib>Mitko Veta</creatorcontrib><creatorcontrib>Jansen, Jacobus F A</creatorcontrib><creatorcontrib>Breeuwer, Marcel</creatorcontrib><creatorcontrib>Ruud J G van Sloun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkofer, Julian P</au><au>Dennis M J van de Sande</au><au>Amirrajab, Sina</au><au>Drenthen, Gerhard S</au><au>Mitko Veta</au><au>Jansen, Jacobus F A</au><au>Breeuwer, Marcel</au><au>Ruud J G van Sloun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge</atitle><jtitle>arXiv.org</jtitle><date>2023-06-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthetic as well as in-vivo scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2822885928 |
source | Publicly Available Content Database |
subjects | Covariance matrix Deep learning Machine learning Magnetic resonance spectroscopy Matrix methods |
title | A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Deep%20Learning%20Approach%20Utilizing%20Covariance%20Matrix%20Analysis%20for%20the%20ISBI%20Edited%20MRS%20Reconstruction%20Challenge&rft.jtitle=arXiv.org&rft.au=Merkofer,%20Julian%20P&rft.date=2023-06-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2822885928%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28228859283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822885928&rft_id=info:pmid/&rfr_iscdi=true |