Loading…

A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge

This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthet...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-06
Main Authors: Merkofer, Julian P, Dennis M J van de Sande, Amirrajab, Sina, Drenthen, Gerhard S, Mitko Veta, Jansen, Jacobus F A, Breeuwer, Marcel, Ruud J G van Sloun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Merkofer, Julian P
Dennis M J van de Sande
Amirrajab, Sina
Drenthen, Gerhard S
Mitko Veta
Jansen, Jacobus F A
Breeuwer, Marcel
Ruud J G van Sloun
description This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthetic as well as in-vivo scenarios.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2822885928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822885928</sourcerecordid><originalsourceid>FETCH-proquest_journals_28228859283</originalsourceid><addsrcrecordid>eNqNjcEKwjAQBYMgWLT_sOBZqFur8VhrRUEvrZ4l1NVGQlKTVNSvV8EP8PRgGOZ1WIBxPB7xCWKPhc5doyjC6QyTJA6YTmFJ1MCWhNVSXyBtGmtEVcPBSyVfX5SZu7BS6IpgJ7yVD0i1UE8nHZyNBV8TbMrFBvKT9HSCXVFCQZXRztu28tJoyGqhFOkLDVj3LJSj8Ld9Nlzl-2w9-pzeWnL-eDWt_dTdETki58kcefyf9QZ7FEkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822885928</pqid></control><display><type>article</type><title>A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge</title><source>Publicly Available Content Database</source><creator>Merkofer, Julian P ; Dennis M J van de Sande ; Amirrajab, Sina ; Drenthen, Gerhard S ; Mitko Veta ; Jansen, Jacobus F A ; Breeuwer, Marcel ; Ruud J G van Sloun</creator><creatorcontrib>Merkofer, Julian P ; Dennis M J van de Sande ; Amirrajab, Sina ; Drenthen, Gerhard S ; Mitko Veta ; Jansen, Jacobus F A ; Breeuwer, Marcel ; Ruud J G van Sloun</creatorcontrib><description>This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthetic as well as in-vivo scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Covariance matrix ; Deep learning ; Machine learning ; Magnetic resonance spectroscopy ; Matrix methods</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2822885928?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Merkofer, Julian P</creatorcontrib><creatorcontrib>Dennis M J van de Sande</creatorcontrib><creatorcontrib>Amirrajab, Sina</creatorcontrib><creatorcontrib>Drenthen, Gerhard S</creatorcontrib><creatorcontrib>Mitko Veta</creatorcontrib><creatorcontrib>Jansen, Jacobus F A</creatorcontrib><creatorcontrib>Breeuwer, Marcel</creatorcontrib><creatorcontrib>Ruud J G van Sloun</creatorcontrib><title>A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge</title><title>arXiv.org</title><description>This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthetic as well as in-vivo scenarios.</description><subject>Covariance matrix</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Magnetic resonance spectroscopy</subject><subject>Matrix methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcEKwjAQBYMgWLT_sOBZqFur8VhrRUEvrZ4l1NVGQlKTVNSvV8EP8PRgGOZ1WIBxPB7xCWKPhc5doyjC6QyTJA6YTmFJ1MCWhNVSXyBtGmtEVcPBSyVfX5SZu7BS6IpgJ7yVD0i1UE8nHZyNBV8TbMrFBvKT9HSCXVFCQZXRztu28tJoyGqhFOkLDVj3LJSj8Ld9Nlzl-2w9-pzeWnL-eDWt_dTdETki58kcefyf9QZ7FEkE</recordid><startdate>20230605</startdate><enddate>20230605</enddate><creator>Merkofer, Julian P</creator><creator>Dennis M J van de Sande</creator><creator>Amirrajab, Sina</creator><creator>Drenthen, Gerhard S</creator><creator>Mitko Veta</creator><creator>Jansen, Jacobus F A</creator><creator>Breeuwer, Marcel</creator><creator>Ruud J G van Sloun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230605</creationdate><title>A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge</title><author>Merkofer, Julian P ; Dennis M J van de Sande ; Amirrajab, Sina ; Drenthen, Gerhard S ; Mitko Veta ; Jansen, Jacobus F A ; Breeuwer, Marcel ; Ruud J G van Sloun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28228859283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Covariance matrix</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Magnetic resonance spectroscopy</topic><topic>Matrix methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Merkofer, Julian P</creatorcontrib><creatorcontrib>Dennis M J van de Sande</creatorcontrib><creatorcontrib>Amirrajab, Sina</creatorcontrib><creatorcontrib>Drenthen, Gerhard S</creatorcontrib><creatorcontrib>Mitko Veta</creatorcontrib><creatorcontrib>Jansen, Jacobus F A</creatorcontrib><creatorcontrib>Breeuwer, Marcel</creatorcontrib><creatorcontrib>Ruud J G van Sloun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkofer, Julian P</au><au>Dennis M J van de Sande</au><au>Amirrajab, Sina</au><au>Drenthen, Gerhard S</au><au>Mitko Veta</au><au>Jansen, Jacobus F A</au><au>Breeuwer, Marcel</au><au>Ruud J G van Sloun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge</atitle><jtitle>arXiv.org</jtitle><date>2023-06-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthetic as well as in-vivo scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2822885928
source Publicly Available Content Database
subjects Covariance matrix
Deep learning
Machine learning
Magnetic resonance spectroscopy
Matrix methods
title A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Deep%20Learning%20Approach%20Utilizing%20Covariance%20Matrix%20Analysis%20for%20the%20ISBI%20Edited%20MRS%20Reconstruction%20Challenge&rft.jtitle=arXiv.org&rft.au=Merkofer,%20Julian%20P&rft.date=2023-06-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2822885928%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28228859283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822885928&rft_id=info:pmid/&rfr_iscdi=true