Loading…

Multi-mode lasing in supercell plasmonic nanoparticle arrays

Multicolour light sources can be used in applications such as lighting and multiplexing signals. In photonic and plasmonic systems, one way to achieve multicolour light is via multi-mode lasing. To achieve this, plasmonic nanoparticle arrays are typically arranged in superlattices that lead to multi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-06
Main Authors: Heilmann, Rebecca, Arjas, Kristian, Hakala, Tommi K, Törmä, Päivi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Heilmann, Rebecca
Arjas, Kristian
Hakala, Tommi K
Törmä, Päivi
description Multicolour light sources can be used in applications such as lighting and multiplexing signals. In photonic and plasmonic systems, one way to achieve multicolour light is via multi-mode lasing. To achieve this, plasmonic nanoparticle arrays are typically arranged in superlattices that lead to multiple dispersions of the single arrays coupled via the superlattice Bragg modes. Here, we show an alternative way to enable multi-mode lasing in plasmonic nanoparticle arrays. We design a supercell in a square lattice by leaving part of the lattice sites empty. This results in multiple dispersive branches caused by the supercell period and hence creates additional band edges that can support lasing. We experimentally demonstrate multi-mode lasing in such a supercell array. Furthermore, we identify the lasing modes by calculating the dispersion by combining the structure factor of the array design with an empty lattice approximation. We conclude that the lasing modes are the 74th \(\Gamma\)- and 106th \(X\)-point of the supercell. By tuning the square lattice period with respect to the gain emission we can control the modes that lase. Finally, we show that the lasing modes exhibit a combination of transverse electric and transverse magnetic mode characteristics in polarization resolved measurements.
doi_str_mv 10.48550/arxiv.2306.03439
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2823302156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823302156</sourcerecordid><originalsourceid>FETCH-LOGICAL-a959-647791bef11a86939c6ba09b9ddaaff70b4f036f9e6ecf02be44a8ad04696883</originalsourceid><addsrcrecordid>eNotj81KxDAYRYMgOIzzAO4Crlu__DYBNzL4ByMuZvbD1zaRDJm0Jq3o21vQ1YWzOIdLyA2DWhql4A7zd_iquQBdg5DCXpAVF4JVRnJ-RTalnACA64YrJVbk_m2OU6jOQ-9oxBLSBw2Jlnl0uXMx0nGB5yGFjiZMw4h5Cl10FHPGn3JNLj3G4jb_uyb7p8fD9qXavT-_bh92FVplKy2bxrLWecbQaCtsp1sE29q-R_S-gVZ6ENpbp13ngbdOSjTYg9RWGyPW5PbPOubhc3ZlOp6GOacleORmuQacKS1-ATk-SfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823302156</pqid></control><display><type>article</type><title>Multi-mode lasing in supercell plasmonic nanoparticle arrays</title><source>ProQuest - Publicly Available Content Database</source><creator>Heilmann, Rebecca ; Arjas, Kristian ; Hakala, Tommi K ; Törmä, Päivi</creator><creatorcontrib>Heilmann, Rebecca ; Arjas, Kristian ; Hakala, Tommi K ; Törmä, Päivi</creatorcontrib><description>Multicolour light sources can be used in applications such as lighting and multiplexing signals. In photonic and plasmonic systems, one way to achieve multicolour light is via multi-mode lasing. To achieve this, plasmonic nanoparticle arrays are typically arranged in superlattices that lead to multiple dispersions of the single arrays coupled via the superlattice Bragg modes. Here, we show an alternative way to enable multi-mode lasing in plasmonic nanoparticle arrays. We design a supercell in a square lattice by leaving part of the lattice sites empty. This results in multiple dispersive branches caused by the supercell period and hence creates additional band edges that can support lasing. We experimentally demonstrate multi-mode lasing in such a supercell array. Furthermore, we identify the lasing modes by calculating the dispersion by combining the structure factor of the array design with an empty lattice approximation. We conclude that the lasing modes are the 74th \(\Gamma\)- and 106th \(X\)-point of the supercell. By tuning the square lattice period with respect to the gain emission we can control the modes that lase. Finally, we show that the lasing modes exhibit a combination of transverse electric and transverse magnetic mode characteristics in polarization resolved measurements.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2306.03439</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arrays ; Emissions control ; Lasing ; Lattice sites ; Lattice vibration ; Light sources ; Multiplexing ; Nanoparticles ; Plasmonics ; Structure factor ; Superlattices ; Transverse magnetic modes</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2823302156?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Heilmann, Rebecca</creatorcontrib><creatorcontrib>Arjas, Kristian</creatorcontrib><creatorcontrib>Hakala, Tommi K</creatorcontrib><creatorcontrib>Törmä, Päivi</creatorcontrib><title>Multi-mode lasing in supercell plasmonic nanoparticle arrays</title><title>arXiv.org</title><description>Multicolour light sources can be used in applications such as lighting and multiplexing signals. In photonic and plasmonic systems, one way to achieve multicolour light is via multi-mode lasing. To achieve this, plasmonic nanoparticle arrays are typically arranged in superlattices that lead to multiple dispersions of the single arrays coupled via the superlattice Bragg modes. Here, we show an alternative way to enable multi-mode lasing in plasmonic nanoparticle arrays. We design a supercell in a square lattice by leaving part of the lattice sites empty. This results in multiple dispersive branches caused by the supercell period and hence creates additional band edges that can support lasing. We experimentally demonstrate multi-mode lasing in such a supercell array. Furthermore, we identify the lasing modes by calculating the dispersion by combining the structure factor of the array design with an empty lattice approximation. We conclude that the lasing modes are the 74th \(\Gamma\)- and 106th \(X\)-point of the supercell. By tuning the square lattice period with respect to the gain emission we can control the modes that lase. Finally, we show that the lasing modes exhibit a combination of transverse electric and transverse magnetic mode characteristics in polarization resolved measurements.</description><subject>Arrays</subject><subject>Emissions control</subject><subject>Lasing</subject><subject>Lattice sites</subject><subject>Lattice vibration</subject><subject>Light sources</subject><subject>Multiplexing</subject><subject>Nanoparticles</subject><subject>Plasmonics</subject><subject>Structure factor</subject><subject>Superlattices</subject><subject>Transverse magnetic modes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj81KxDAYRYMgOIzzAO4Crlu__DYBNzL4ByMuZvbD1zaRDJm0Jq3o21vQ1YWzOIdLyA2DWhql4A7zd_iquQBdg5DCXpAVF4JVRnJ-RTalnACA64YrJVbk_m2OU6jOQ-9oxBLSBw2Jlnl0uXMx0nGB5yGFjiZMw4h5Cl10FHPGn3JNLj3G4jb_uyb7p8fD9qXavT-_bh92FVplKy2bxrLWecbQaCtsp1sE29q-R_S-gVZ6ENpbp13ngbdOSjTYg9RWGyPW5PbPOubhc3ZlOp6GOacleORmuQacKS1-ATk-SfA</recordid><startdate>20230606</startdate><enddate>20230606</enddate><creator>Heilmann, Rebecca</creator><creator>Arjas, Kristian</creator><creator>Hakala, Tommi K</creator><creator>Törmä, Päivi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230606</creationdate><title>Multi-mode lasing in supercell plasmonic nanoparticle arrays</title><author>Heilmann, Rebecca ; Arjas, Kristian ; Hakala, Tommi K ; Törmä, Päivi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a959-647791bef11a86939c6ba09b9ddaaff70b4f036f9e6ecf02be44a8ad04696883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Emissions control</topic><topic>Lasing</topic><topic>Lattice sites</topic><topic>Lattice vibration</topic><topic>Light sources</topic><topic>Multiplexing</topic><topic>Nanoparticles</topic><topic>Plasmonics</topic><topic>Structure factor</topic><topic>Superlattices</topic><topic>Transverse magnetic modes</topic><toplevel>online_resources</toplevel><creatorcontrib>Heilmann, Rebecca</creatorcontrib><creatorcontrib>Arjas, Kristian</creatorcontrib><creatorcontrib>Hakala, Tommi K</creatorcontrib><creatorcontrib>Törmä, Päivi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heilmann, Rebecca</au><au>Arjas, Kristian</au><au>Hakala, Tommi K</au><au>Törmä, Päivi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-mode lasing in supercell plasmonic nanoparticle arrays</atitle><jtitle>arXiv.org</jtitle><date>2023-06-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Multicolour light sources can be used in applications such as lighting and multiplexing signals. In photonic and plasmonic systems, one way to achieve multicolour light is via multi-mode lasing. To achieve this, plasmonic nanoparticle arrays are typically arranged in superlattices that lead to multiple dispersions of the single arrays coupled via the superlattice Bragg modes. Here, we show an alternative way to enable multi-mode lasing in plasmonic nanoparticle arrays. We design a supercell in a square lattice by leaving part of the lattice sites empty. This results in multiple dispersive branches caused by the supercell period and hence creates additional band edges that can support lasing. We experimentally demonstrate multi-mode lasing in such a supercell array. Furthermore, we identify the lasing modes by calculating the dispersion by combining the structure factor of the array design with an empty lattice approximation. We conclude that the lasing modes are the 74th \(\Gamma\)- and 106th \(X\)-point of the supercell. By tuning the square lattice period with respect to the gain emission we can control the modes that lase. Finally, we show that the lasing modes exhibit a combination of transverse electric and transverse magnetic mode characteristics in polarization resolved measurements.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2306.03439</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2823302156
source ProQuest - Publicly Available Content Database
subjects Arrays
Emissions control
Lasing
Lattice sites
Lattice vibration
Light sources
Multiplexing
Nanoparticles
Plasmonics
Structure factor
Superlattices
Transverse magnetic modes
title Multi-mode lasing in supercell plasmonic nanoparticle arrays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-mode%20lasing%20in%20supercell%20plasmonic%20nanoparticle%20arrays&rft.jtitle=arXiv.org&rft.au=Heilmann,%20Rebecca&rft.date=2023-06-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2306.03439&rft_dat=%3Cproquest%3E2823302156%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a959-647791bef11a86939c6ba09b9ddaaff70b4f036f9e6ecf02be44a8ad04696883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823302156&rft_id=info:pmid/&rfr_iscdi=true