Loading…
Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis
This paper is concerned with the exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis . It is shown in a recent work (Lai and Zou in J Differ Equ 269: 6400-6421, 2020) that this system admits traveling wavefronts when the ba...
Saved in:
Published in: | Zeitschrift für angewandte Mathematik und Physik 2023-06, Vol.74 (3), Article 116 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-476084d69406dd6ec3adf06ffac6bebe4c78fef545216832d524a98221c95c5a3 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 74 |
creator | Hao, Yu-Cai Zhang, Guo-Bao He, Juan |
description | This paper is concerned with the exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick
Ixodes scapularis
. It is shown in a recent work (Lai and Zou in J Differ Equ 269: 6400-6421, 2020) that this system admits traveling wavefronts when the basic reproduction number is greater than one and the wave speeds are larger than or equal to the asymptotic speed of spread. In this paper, we further study the asymptotic stability of traveling wavefronts. Applying the techniques of weighted energy method and the comparison principle, we prove that the traveling wavefronts with relatively large speed are exponentially stable, when the initial perturbation around the traveling wavefronts decays exponentially as
x
→
-
∞
, but can be arbitrarily large in other locations. |
doi_str_mv | 10.1007/s00033-023-02014-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823644543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823644543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-476084d69406dd6ec3adf06ffac6bebe4c78fef545216832d524a98221c95c5a3</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEuHxA1SWqBdmbe-rRFGASJFooLYcPzZONuvFdiDp-HQcFomOwhoX597RHIRucrjLAar7AACUZkCOD3KWNSdokjMCWQO0OUUTAMYyQqriHF2EsE54lQOdoK_ZfnC97qMVHQ5RLG1n4wE7g6MXH7qzfYs_08d418eAjfNY4HAIUW_x1qkRiCuNW-1aL4aVlTgMXgt17Fh2Qm6yTretVjhaucHzfQoFHKQYdp3wNlyhMyO6oK9_5yV6e5y9Tp-zxcvTfPqwyCSpIGasKqFmqmwYlEqVWlKhDJTGCFku9VIzWdVGm4IVJC9rSlRBmGhqQnLZFLIQ9BLdjr2Dd-87HSJfu53v00pOakJLxgpGE0VGSnoXgteGD95uhT_wHPjRNB9N82Sa_5jmTQrRMZQOTzq0_6v-J_UNGieDhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823644543</pqid></control><display><type>article</type><title>Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis</title><source>Springer Link</source><creator>Hao, Yu-Cai ; Zhang, Guo-Bao ; He, Juan</creator><creatorcontrib>Hao, Yu-Cai ; Zhang, Guo-Bao ; He, Juan</creatorcontrib><description>This paper is concerned with the exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick
Ixodes scapularis
. It is shown in a recent work (Lai and Zou in J Differ Equ 269: 6400-6421, 2020) that this system admits traveling wavefronts when the basic reproduction number is greater than one and the wave speeds are larger than or equal to the asymptotic speed of spread. In this paper, we further study the asymptotic stability of traveling wavefronts. Applying the techniques of weighted energy method and the comparison principle, we prove that the traveling wavefronts with relatively large speed are exponentially stable, when the initial perturbation around the traveling wavefronts decays exponentially as
x
→
-
∞
, but can be arbitrarily large in other locations.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-023-02014-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asymptotic methods ; Asymptotic properties ; Energy methods ; Engineering ; Mathematical Methods in Physics ; Modelling ; Perturbation ; Stability ; Theoretical and Applied Mechanics ; Wave fronts</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2023-06, Vol.74 (3), Article 116</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-476084d69406dd6ec3adf06ffac6bebe4c78fef545216832d524a98221c95c5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hao, Yu-Cai</creatorcontrib><creatorcontrib>Zhang, Guo-Bao</creatorcontrib><creatorcontrib>He, Juan</creatorcontrib><title>Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>This paper is concerned with the exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick
Ixodes scapularis
. It is shown in a recent work (Lai and Zou in J Differ Equ 269: 6400-6421, 2020) that this system admits traveling wavefronts when the basic reproduction number is greater than one and the wave speeds are larger than or equal to the asymptotic speed of spread. In this paper, we further study the asymptotic stability of traveling wavefronts. Applying the techniques of weighted energy method and the comparison principle, we prove that the traveling wavefronts with relatively large speed are exponentially stable, when the initial perturbation around the traveling wavefronts decays exponentially as
x
→
-
∞
, but can be arbitrarily large in other locations.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Energy methods</subject><subject>Engineering</subject><subject>Mathematical Methods in Physics</subject><subject>Modelling</subject><subject>Perturbation</subject><subject>Stability</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wave fronts</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRS0EEuHxA1SWqBdmbe-rRFGASJFooLYcPzZONuvFdiDp-HQcFomOwhoX597RHIRucrjLAar7AACUZkCOD3KWNSdokjMCWQO0OUUTAMYyQqriHF2EsE54lQOdoK_ZfnC97qMVHQ5RLG1n4wE7g6MXH7qzfYs_08d418eAjfNY4HAIUW_x1qkRiCuNW-1aL4aVlTgMXgt17Fh2Qm6yTretVjhaucHzfQoFHKQYdp3wNlyhMyO6oK9_5yV6e5y9Tp-zxcvTfPqwyCSpIGasKqFmqmwYlEqVWlKhDJTGCFku9VIzWdVGm4IVJC9rSlRBmGhqQnLZFLIQ9BLdjr2Dd-87HSJfu53v00pOakJLxgpGE0VGSnoXgteGD95uhT_wHPjRNB9N82Sa_5jmTQrRMZQOTzq0_6v-J_UNGieDhQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hao, Yu-Cai</creator><creator>Zhang, Guo-Bao</creator><creator>He, Juan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis</title><author>Hao, Yu-Cai ; Zhang, Guo-Bao ; He, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-476084d69406dd6ec3adf06ffac6bebe4c78fef545216832d524a98221c95c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Energy methods</topic><topic>Engineering</topic><topic>Mathematical Methods in Physics</topic><topic>Modelling</topic><topic>Perturbation</topic><topic>Stability</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yu-Cai</creatorcontrib><creatorcontrib>Zhang, Guo-Bao</creatorcontrib><creatorcontrib>He, Juan</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Yu-Cai</au><au>Zhang, Guo-Bao</au><au>He, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>74</volume><issue>3</issue><artnum>116</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>This paper is concerned with the exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick
Ixodes scapularis
. It is shown in a recent work (Lai and Zou in J Differ Equ 269: 6400-6421, 2020) that this system admits traveling wavefronts when the basic reproduction number is greater than one and the wave speeds are larger than or equal to the asymptotic speed of spread. In this paper, we further study the asymptotic stability of traveling wavefronts. Applying the techniques of weighted energy method and the comparison principle, we prove that the traveling wavefronts with relatively large speed are exponentially stable, when the initial perturbation around the traveling wavefronts decays exponentially as
x
→
-
∞
, but can be arbitrarily large in other locations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-023-02014-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2023-06, Vol.74 (3), Article 116 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2823644543 |
source | Springer Link |
subjects | Asymptotic methods Asymptotic properties Energy methods Engineering Mathematical Methods in Physics Modelling Perturbation Stability Theoretical and Applied Mechanics Wave fronts |
title | Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20stability%20of%20traveling%20wavefronts%20for%20a%20system%20modeling%20the%20geographic%20spread%20of%20black-legged%20tick%20Ixodes%20scapularis&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Hao,%20Yu-Cai&rft.date=2023-06-01&rft.volume=74&rft.issue=3&rft.artnum=116&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-023-02014-9&rft_dat=%3Cproquest_cross%3E2823644543%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-476084d69406dd6ec3adf06ffac6bebe4c78fef545216832d524a98221c95c5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823644543&rft_id=info:pmid/&rfr_iscdi=true |