Loading…

Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis

This paper is concerned with the exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis . It is shown in a recent work (Lai and Zou in J Differ Equ 269: 6400-6421, 2020) that this system admits traveling wavefronts when the ba...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Physik 2023-06, Vol.74 (3), Article 116
Main Authors: Hao, Yu-Cai, Zhang, Guo-Bao, He, Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-476084d69406dd6ec3adf06ffac6bebe4c78fef545216832d524a98221c95c5a3
container_end_page
container_issue 3
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 74
creator Hao, Yu-Cai
Zhang, Guo-Bao
He, Juan
description This paper is concerned with the exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis . It is shown in a recent work (Lai and Zou in J Differ Equ 269: 6400-6421, 2020) that this system admits traveling wavefronts when the basic reproduction number is greater than one and the wave speeds are larger than or equal to the asymptotic speed of spread. In this paper, we further study the asymptotic stability of traveling wavefronts. Applying the techniques of weighted energy method and the comparison principle, we prove that the traveling wavefronts with relatively large speed are exponentially stable, when the initial perturbation around the traveling wavefronts decays exponentially as x → - ∞ , but can be arbitrarily large in other locations.
doi_str_mv 10.1007/s00033-023-02014-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823644543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823644543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-476084d69406dd6ec3adf06ffac6bebe4c78fef545216832d524a98221c95c5a3</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEuHxA1SWqBdmbe-rRFGASJFooLYcPzZONuvFdiDp-HQcFomOwhoX597RHIRucrjLAar7AACUZkCOD3KWNSdokjMCWQO0OUUTAMYyQqriHF2EsE54lQOdoK_ZfnC97qMVHQ5RLG1n4wE7g6MXH7qzfYs_08d418eAjfNY4HAIUW_x1qkRiCuNW-1aL4aVlTgMXgt17Fh2Qm6yTretVjhaucHzfQoFHKQYdp3wNlyhMyO6oK9_5yV6e5y9Tp-zxcvTfPqwyCSpIGasKqFmqmwYlEqVWlKhDJTGCFku9VIzWdVGm4IVJC9rSlRBmGhqQnLZFLIQ9BLdjr2Dd-87HSJfu53v00pOakJLxgpGE0VGSnoXgteGD95uhT_wHPjRNB9N82Sa_5jmTQrRMZQOTzq0_6v-J_UNGieDhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823644543</pqid></control><display><type>article</type><title>Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis</title><source>Springer Link</source><creator>Hao, Yu-Cai ; Zhang, Guo-Bao ; He, Juan</creator><creatorcontrib>Hao, Yu-Cai ; Zhang, Guo-Bao ; He, Juan</creatorcontrib><description>This paper is concerned with the exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis . It is shown in a recent work (Lai and Zou in J Differ Equ 269: 6400-6421, 2020) that this system admits traveling wavefronts when the basic reproduction number is greater than one and the wave speeds are larger than or equal to the asymptotic speed of spread. In this paper, we further study the asymptotic stability of traveling wavefronts. Applying the techniques of weighted energy method and the comparison principle, we prove that the traveling wavefronts with relatively large speed are exponentially stable, when the initial perturbation around the traveling wavefronts decays exponentially as x → - ∞ , but can be arbitrarily large in other locations.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-023-02014-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asymptotic methods ; Asymptotic properties ; Energy methods ; Engineering ; Mathematical Methods in Physics ; Modelling ; Perturbation ; Stability ; Theoretical and Applied Mechanics ; Wave fronts</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2023-06, Vol.74 (3), Article 116</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-476084d69406dd6ec3adf06ffac6bebe4c78fef545216832d524a98221c95c5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hao, Yu-Cai</creatorcontrib><creatorcontrib>Zhang, Guo-Bao</creatorcontrib><creatorcontrib>He, Juan</creatorcontrib><title>Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>This paper is concerned with the exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis . It is shown in a recent work (Lai and Zou in J Differ Equ 269: 6400-6421, 2020) that this system admits traveling wavefronts when the basic reproduction number is greater than one and the wave speeds are larger than or equal to the asymptotic speed of spread. In this paper, we further study the asymptotic stability of traveling wavefronts. Applying the techniques of weighted energy method and the comparison principle, we prove that the traveling wavefronts with relatively large speed are exponentially stable, when the initial perturbation around the traveling wavefronts decays exponentially as x → - ∞ , but can be arbitrarily large in other locations.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Energy methods</subject><subject>Engineering</subject><subject>Mathematical Methods in Physics</subject><subject>Modelling</subject><subject>Perturbation</subject><subject>Stability</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wave fronts</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRS0EEuHxA1SWqBdmbe-rRFGASJFooLYcPzZONuvFdiDp-HQcFomOwhoX597RHIRucrjLAar7AACUZkCOD3KWNSdokjMCWQO0OUUTAMYyQqriHF2EsE54lQOdoK_ZfnC97qMVHQ5RLG1n4wE7g6MXH7qzfYs_08d418eAjfNY4HAIUW_x1qkRiCuNW-1aL4aVlTgMXgt17Fh2Qm6yTretVjhaucHzfQoFHKQYdp3wNlyhMyO6oK9_5yV6e5y9Tp-zxcvTfPqwyCSpIGasKqFmqmwYlEqVWlKhDJTGCFku9VIzWdVGm4IVJC9rSlRBmGhqQnLZFLIQ9BLdjr2Dd-87HSJfu53v00pOakJLxgpGE0VGSnoXgteGD95uhT_wHPjRNB9N82Sa_5jmTQrRMZQOTzq0_6v-J_UNGieDhQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hao, Yu-Cai</creator><creator>Zhang, Guo-Bao</creator><creator>He, Juan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis</title><author>Hao, Yu-Cai ; Zhang, Guo-Bao ; He, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-476084d69406dd6ec3adf06ffac6bebe4c78fef545216832d524a98221c95c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Energy methods</topic><topic>Engineering</topic><topic>Mathematical Methods in Physics</topic><topic>Modelling</topic><topic>Perturbation</topic><topic>Stability</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yu-Cai</creatorcontrib><creatorcontrib>Zhang, Guo-Bao</creatorcontrib><creatorcontrib>He, Juan</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Yu-Cai</au><au>Zhang, Guo-Bao</au><au>He, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>74</volume><issue>3</issue><artnum>116</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>This paper is concerned with the exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis . It is shown in a recent work (Lai and Zou in J Differ Equ 269: 6400-6421, 2020) that this system admits traveling wavefronts when the basic reproduction number is greater than one and the wave speeds are larger than or equal to the asymptotic speed of spread. In this paper, we further study the asymptotic stability of traveling wavefronts. Applying the techniques of weighted energy method and the comparison principle, we prove that the traveling wavefronts with relatively large speed are exponentially stable, when the initial perturbation around the traveling wavefronts decays exponentially as x → - ∞ , but can be arbitrarily large in other locations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-023-02014-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2023-06, Vol.74 (3), Article 116
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2823644543
source Springer Link
subjects Asymptotic methods
Asymptotic properties
Energy methods
Engineering
Mathematical Methods in Physics
Modelling
Perturbation
Stability
Theoretical and Applied Mechanics
Wave fronts
title Exponential stability of traveling wavefronts for a system modeling the geographic spread of black-legged tick Ixodes scapularis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20stability%20of%20traveling%20wavefronts%20for%20a%20system%20modeling%20the%20geographic%20spread%20of%20black-legged%20tick%20Ixodes%20scapularis&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Hao,%20Yu-Cai&rft.date=2023-06-01&rft.volume=74&rft.issue=3&rft.artnum=116&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-023-02014-9&rft_dat=%3Cproquest_cross%3E2823644543%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-476084d69406dd6ec3adf06ffac6bebe4c78fef545216832d524a98221c95c5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823644543&rft_id=info:pmid/&rfr_iscdi=true