Hybrid approach for text categorization: A case study with Bangla news article
The incredible expansion of online texts due to the Internet has intensified and revived the interest of sorting, managing and categorising the documents into their respective domains. This shows the pressing need for automatic text categorization system to assign a document into its appropriate dom...
Saved in:
Published in: | Journal of information science 2023-06, Vol.49 (3), p.762-777 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-480a675fcc5ee172dbc59d20460de2833edc7e13d2ffb313dd92a7c20d3c41b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-480a675fcc5ee172dbc59d20460de2833edc7e13d2ffb313dd92a7c20d3c41b13 |
container_end_page | 777 |
container_issue | 3 |
container_start_page | 762 |
container_title | Journal of information science |
container_volume | 49 |
creator | Dhar, Ankita Mukherjee, Himadri Roy, Kaushik Santosh, KC Dash, Niladri Sekhar |
description | The incredible expansion of online texts due to the Internet has intensified and revived the interest of sorting, managing and categorising the documents into their respective domains. This shows the pressing need for automatic text categorization system to assign a document into its appropriate domain. In this article, the focus is on showcasing the effectiveness of a hybrid approach that works elegantly by combining text-based and graph-based features. The hybrid approach was applied on 14,373 Bangla articles with 57,22,569 tokens collected from various online news corpora covering nine categories. This article also presents the individual application of both the features to explicate how they generally work. For classification purposes, the feature sets were passed through the Bayesian classification methods which yield satisfactory results with 98.73% accuracy for Naïve Bayes Multinomial (NBM). Also, to test the robustness and language independency of the system, the experiments were performed on two popular English datasets as well. |
doi_str_mv | 10.1177/01655515211027770 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823914709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01655515211027770</sage_id><sourcerecordid>2823914709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-480a675fcc5ee172dbc59d20460de2833edc7e13d2ffb313dd92a7c20d3c41b13</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcFz6k7-yebeKvFWqHoRc9hsztJU2pSd7fU-ulNqOBBPD2Y-b03wyPkGtgEQOtbBqlSChQHYFxrzU7ICLSEJJWZOiWjYZ8MwDm5CGHNGFO5kCPyvDiUvnHUbLe-M3ZFq87TiJ-RWhOx7nzzZWLTtXd02k8C0hB37kD3TVzRe9PWG0Nb3AdqfGzsBi_JWWU2Aa9-dEze5g-vs0WyfHl8mk2XiRXAYyIzZlKtKmsVImjuSqtyx5lMmUOeCYHOagTheFWVoleXc6MtZ05YCSWIMbk55vZff-wwxGLd7Xzbnyx4xkUOUrO8p-BIWd-F4LEqtr55N_5QACuG2oo_tfWeydETTI2_qf8bvgGW02xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823914709</pqid></control><display><type>article</type><title>Hybrid approach for text categorization: A case study with Bangla news article</title><source>Library & Information Science Abstracts (LISA)</source><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Dhar, Ankita ; Mukherjee, Himadri ; Roy, Kaushik ; Santosh, KC ; Dash, Niladri Sekhar</creator><creatorcontrib>Dhar, Ankita ; Mukherjee, Himadri ; Roy, Kaushik ; Santosh, KC ; Dash, Niladri Sekhar</creatorcontrib><description>The incredible expansion of online texts due to the Internet has intensified and revived the interest of sorting, managing and categorising the documents into their respective domains. This shows the pressing need for automatic text categorization system to assign a document into its appropriate domain. In this article, the focus is on showcasing the effectiveness of a hybrid approach that works elegantly by combining text-based and graph-based features. The hybrid approach was applied on 14,373 Bangla articles with 57,22,569 tokens collected from various online news corpora covering nine categories. This article also presents the individual application of both the features to explicate how they generally work. For classification purposes, the feature sets were passed through the Bayesian classification methods which yield satisfactory results with 98.73% accuracy for Naïve Bayes Multinomial (NBM). Also, to test the robustness and language independency of the system, the experiments were performed on two popular English datasets as well.</description><identifier>ISSN: 0165-5515</identifier><identifier>EISSN: 1741-6485</identifier><identifier>DOI: 10.1177/01655515211027770</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Classification ; Documents ; Domains ; News ; Text categorization</subject><ispartof>Journal of information science, 2023-06, Vol.49 (3), p.762-777</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-480a675fcc5ee172dbc59d20460de2833edc7e13d2ffb313dd92a7c20d3c41b13</citedby><cites>FETCH-LOGICAL-c312t-480a675fcc5ee172dbc59d20460de2833edc7e13d2ffb313dd92a7c20d3c41b13</cites><orcidid>0000-0002-3360-7576 ; 0000-0001-6465-671X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901,34111</link.rule.ids></links><search><creatorcontrib>Dhar, Ankita</creatorcontrib><creatorcontrib>Mukherjee, Himadri</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><creatorcontrib>Santosh, KC</creatorcontrib><creatorcontrib>Dash, Niladri Sekhar</creatorcontrib><title>Hybrid approach for text categorization: A case study with Bangla news article</title><title>Journal of information science</title><description>The incredible expansion of online texts due to the Internet has intensified and revived the interest of sorting, managing and categorising the documents into their respective domains. This shows the pressing need for automatic text categorization system to assign a document into its appropriate domain. In this article, the focus is on showcasing the effectiveness of a hybrid approach that works elegantly by combining text-based and graph-based features. The hybrid approach was applied on 14,373 Bangla articles with 57,22,569 tokens collected from various online news corpora covering nine categories. This article also presents the individual application of both the features to explicate how they generally work. For classification purposes, the feature sets were passed through the Bayesian classification methods which yield satisfactory results with 98.73% accuracy for Naïve Bayes Multinomial (NBM). Also, to test the robustness and language independency of the system, the experiments were performed on two popular English datasets as well.</description><subject>Classification</subject><subject>Documents</subject><subject>Domains</subject><subject>News</subject><subject>Text categorization</subject><issn>0165-5515</issn><issn>1741-6485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gLcFz6k7-yebeKvFWqHoRc9hsztJU2pSd7fU-ulNqOBBPD2Y-b03wyPkGtgEQOtbBqlSChQHYFxrzU7ICLSEJJWZOiWjYZ8MwDm5CGHNGFO5kCPyvDiUvnHUbLe-M3ZFq87TiJ-RWhOx7nzzZWLTtXd02k8C0hB37kD3TVzRe9PWG0Nb3AdqfGzsBi_JWWU2Aa9-dEze5g-vs0WyfHl8mk2XiRXAYyIzZlKtKmsVImjuSqtyx5lMmUOeCYHOagTheFWVoleXc6MtZ05YCSWIMbk55vZff-wwxGLd7Xzbnyx4xkUOUrO8p-BIWd-F4LEqtr55N_5QACuG2oo_tfWeydETTI2_qf8bvgGW02xQ</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Dhar, Ankita</creator><creator>Mukherjee, Himadri</creator><creator>Roy, Kaushik</creator><creator>Santosh, KC</creator><creator>Dash, Niladri Sekhar</creator><general>SAGE Publications</general><general>Bowker-Saur Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3360-7576</orcidid><orcidid>https://orcid.org/0000-0001-6465-671X</orcidid></search><sort><creationdate>202306</creationdate><title>Hybrid approach for text categorization: A case study with Bangla news article</title><author>Dhar, Ankita ; Mukherjee, Himadri ; Roy, Kaushik ; Santosh, KC ; Dash, Niladri Sekhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-480a675fcc5ee172dbc59d20460de2833edc7e13d2ffb313dd92a7c20d3c41b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Documents</topic><topic>Domains</topic><topic>News</topic><topic>Text categorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhar, Ankita</creatorcontrib><creatorcontrib>Mukherjee, Himadri</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><creatorcontrib>Santosh, KC</creatorcontrib><creatorcontrib>Dash, Niladri Sekhar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhar, Ankita</au><au>Mukherjee, Himadri</au><au>Roy, Kaushik</au><au>Santosh, KC</au><au>Dash, Niladri Sekhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid approach for text categorization: A case study with Bangla news article</atitle><jtitle>Journal of information science</jtitle><date>2023-06</date><risdate>2023</risdate><volume>49</volume><issue>3</issue><spage>762</spage><epage>777</epage><pages>762-777</pages><issn>0165-5515</issn><eissn>1741-6485</eissn><abstract>The incredible expansion of online texts due to the Internet has intensified and revived the interest of sorting, managing and categorising the documents into their respective domains. This shows the pressing need for automatic text categorization system to assign a document into its appropriate domain. In this article, the focus is on showcasing the effectiveness of a hybrid approach that works elegantly by combining text-based and graph-based features. The hybrid approach was applied on 14,373 Bangla articles with 57,22,569 tokens collected from various online news corpora covering nine categories. This article also presents the individual application of both the features to explicate how they generally work. For classification purposes, the feature sets were passed through the Bayesian classification methods which yield satisfactory results with 98.73% accuracy for Naïve Bayes Multinomial (NBM). Also, to test the robustness and language independency of the system, the experiments were performed on two popular English datasets as well.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01655515211027770</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3360-7576</orcidid><orcidid>https://orcid.org/0000-0001-6465-671X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-5515 |
ispartof | Journal of information science, 2023-06, Vol.49 (3), p.762-777 |
issn | 0165-5515 1741-6485 |
language | eng |
recordid | cdi_proquest_journals_2823914709 |
source | Library & Information Science Abstracts (LISA); SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list) |
subjects | Classification Documents Domains News Text categorization |
title | Hybrid approach for text categorization: A case study with Bangla news article |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T12%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20approach%20for%20text%20categorization:%20A%20case%20study%20with%20Bangla%20news%20article&rft.jtitle=Journal%20of%20information%20science&rft.au=Dhar,%20Ankita&rft.date=2023-06&rft.volume=49&rft.issue=3&rft.spage=762&rft.epage=777&rft.pages=762-777&rft.issn=0165-5515&rft.eissn=1741-6485&rft_id=info:doi/10.1177/01655515211027770&rft_dat=%3Cproquest_cross%3E2823914709%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-480a675fcc5ee172dbc59d20460de2833edc7e13d2ffb313dd92a7c20d3c41b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823914709&rft_id=info:pmid/&rft_sage_id=10.1177_01655515211027770&rfr_iscdi=true |