Loading…

Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets

In this paper, the class of Hölder functions in the sense of the L p norm on certain compacts in ( m 3) is analyzed, and theorems of the approximation by functions being harmonic in the neighborhoods of these compacts are proved. These compacts represent a generalization of the concept of a chord-ar...

Full description

Saved in:
Bibliographic Details
Published in:Vestnik, St. Petersburg University. Mathematics St. Petersburg University. Mathematics, 2023, Vol.56 (2), p.190-197
Main Author: Pavlov, D. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1130-914d9304c5d7e7a6a98e3a73f2a98bbc9a2dc92a71caeb82be029e796f75e93
container_end_page 197
container_issue 2
container_start_page 190
container_title Vestnik, St. Petersburg University. Mathematics
container_volume 56
creator Pavlov, D. A.
description In this paper, the class of Hölder functions in the sense of the L p norm on certain compacts in ( m 3) is analyzed, and theorems of the approximation by functions being harmonic in the neighborhoods of these compacts are proved. These compacts represent a generalization of the concept of a chord-arc curve in to higher dimensions. The neighborhood size decreases along with an increase in the approximation accuracy. Estimates of the approximation rate as well as the gradient of the approximation functions are made in the same L p norm.
doi_str_mv 10.1134/S1063454123020140
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824044301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824044301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1130-914d9304c5d7e7a6a98e3a73f2a98bbc9a2dc92a71caeb82be029e796f75e93</originalsourceid><addsrcrecordid>eNp1UM1KxDAQDqLguvoA3gKeq_ltm-OyuK6w6qHeS5pOtUvT1KQF98V8AV_MLCsoiKcZvj9mPoQuKbmmlIubgpKUCyko44QRKsgRmlHFRZLlUh7HPdLJnj9FZyFsCZEpk3yG7GIYvHtvrR5b12PX4PXnR1eDx6upN3ss4LbH4yvgzYAfnbe42uG19tb1rfkliubCWcAPUze2dWuhDxHXHV46O2gz4gLGcI5OGt0FuPiec1Ssbp-X62TzdHe_XGwSE58hiaKiVpwII-sMMp1qlQPXGW9Y3KrKKM1qo5jOqNFQ5awCwhRkKm0yCYrP0dUhNX72NkEYy62bfLwllCxnggjBCY0qelAZ70Lw0JSDjzX4XUlJue-0_NNp9LCDJ0Rt_wL-J_l_0xfuynmW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824044301</pqid></control><display><type>article</type><title>Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets</title><source>Springer Nature</source><creator>Pavlov, D. A.</creator><creatorcontrib>Pavlov, D. A.</creatorcontrib><description>In this paper, the class of Hölder functions in the sense of the L p norm on certain compacts in ( m 3) is analyzed, and theorems of the approximation by functions being harmonic in the neighborhoods of these compacts are proved. These compacts represent a generalization of the concept of a chord-arc curve in to higher dimensions. The neighborhood size decreases along with an increase in the approximation accuracy. Estimates of the approximation rate as well as the gradient of the approximation functions are made in the same L p norm.</description><identifier>ISSN: 1063-4541</identifier><identifier>EISSN: 1934-7855</identifier><identifier>DOI: 10.1134/S1063454123020140</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Approximation ; Compacts ; Harmonic functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Vestnik, St. Petersburg University. Mathematics, 2023, Vol.56 (2), p.190-197</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1063-4541, Vestnik St. Petersburg University, Mathematics, 2023, Vol. 56, No. 2, pp. 190–197. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2023, Vol. 10, No. 2, pp. 259–269.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1130-914d9304c5d7e7a6a98e3a73f2a98bbc9a2dc92a71caeb82be029e796f75e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pavlov, D. A.</creatorcontrib><title>Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets</title><title>Vestnik, St. Petersburg University. Mathematics</title><addtitle>Vestnik St.Petersb. Univ.Math</addtitle><description>In this paper, the class of Hölder functions in the sense of the L p norm on certain compacts in ( m 3) is analyzed, and theorems of the approximation by functions being harmonic in the neighborhoods of these compacts are proved. These compacts represent a generalization of the concept of a chord-arc curve in to higher dimensions. The neighborhood size decreases along with an increase in the approximation accuracy. Estimates of the approximation rate as well as the gradient of the approximation functions are made in the same L p norm.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Compacts</subject><subject>Harmonic functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1063-4541</issn><issn>1934-7855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UM1KxDAQDqLguvoA3gKeq_ltm-OyuK6w6qHeS5pOtUvT1KQF98V8AV_MLCsoiKcZvj9mPoQuKbmmlIubgpKUCyko44QRKsgRmlHFRZLlUh7HPdLJnj9FZyFsCZEpk3yG7GIYvHtvrR5b12PX4PXnR1eDx6upN3ss4LbH4yvgzYAfnbe42uG19tb1rfkliubCWcAPUze2dWuhDxHXHV46O2gz4gLGcI5OGt0FuPiec1Ssbp-X62TzdHe_XGwSE58hiaKiVpwII-sMMp1qlQPXGW9Y3KrKKM1qo5jOqNFQ5awCwhRkKm0yCYrP0dUhNX72NkEYy62bfLwllCxnggjBCY0qelAZ70Lw0JSDjzX4XUlJue-0_NNp9LCDJ0Rt_wL-J_l_0xfuynmW</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Pavlov, D. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets</title><author>Pavlov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1130-914d9304c5d7e7a6a98e3a73f2a98bbc9a2dc92a71caeb82be029e796f75e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Compacts</topic><topic>Harmonic functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlov, D. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Vestnik, St. Petersburg University. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets</atitle><jtitle>Vestnik, St. Petersburg University. Mathematics</jtitle><stitle>Vestnik St.Petersb. Univ.Math</stitle><date>2023</date><risdate>2023</risdate><volume>56</volume><issue>2</issue><spage>190</spage><epage>197</epage><pages>190-197</pages><issn>1063-4541</issn><eissn>1934-7855</eissn><abstract>In this paper, the class of Hölder functions in the sense of the L p norm on certain compacts in ( m 3) is analyzed, and theorems of the approximation by functions being harmonic in the neighborhoods of these compacts are proved. These compacts represent a generalization of the concept of a chord-arc curve in to higher dimensions. The neighborhood size decreases along with an increase in the approximation accuracy. Estimates of the approximation rate as well as the gradient of the approximation functions are made in the same L p norm.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063454123020140</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-4541
ispartof Vestnik, St. Petersburg University. Mathematics, 2023, Vol.56 (2), p.190-197
issn 1063-4541
1934-7855
language eng
recordid cdi_proquest_journals_2824044301
source Springer Nature
subjects Analysis
Approximation
Compacts
Harmonic functions
Mathematical analysis
Mathematics
Mathematics and Statistics
title Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20H%C3%B6lder%20Functions%20in%20the%20Lp%20Norm%20by%20Harmonic%20Functions%20on%20Some%20Multidimensional%20Compact%20Sets&rft.jtitle=Vestnik,%20St.%20Petersburg%20University.%20Mathematics&rft.au=Pavlov,%20D.%20A.&rft.date=2023&rft.volume=56&rft.issue=2&rft.spage=190&rft.epage=197&rft.pages=190-197&rft.issn=1063-4541&rft.eissn=1934-7855&rft_id=info:doi/10.1134/S1063454123020140&rft_dat=%3Cproquest_cross%3E2824044301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1130-914d9304c5d7e7a6a98e3a73f2a98bbc9a2dc92a71caeb82be029e796f75e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824044301&rft_id=info:pmid/&rfr_iscdi=true