Loading…
Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets
In this paper, the class of Hölder functions in the sense of the L p norm on certain compacts in ( m 3) is analyzed, and theorems of the approximation by functions being harmonic in the neighborhoods of these compacts are proved. These compacts represent a generalization of the concept of a chord-ar...
Saved in:
Published in: | Vestnik, St. Petersburg University. Mathematics St. Petersburg University. Mathematics, 2023, Vol.56 (2), p.190-197 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1130-914d9304c5d7e7a6a98e3a73f2a98bbc9a2dc92a71caeb82be029e796f75e93 |
container_end_page | 197 |
container_issue | 2 |
container_start_page | 190 |
container_title | Vestnik, St. Petersburg University. Mathematics |
container_volume | 56 |
creator | Pavlov, D. A. |
description | In this paper, the class of Hölder functions in the sense of the
L
p
norm on certain compacts in
(
m
3) is analyzed, and theorems of the approximation by functions being harmonic in the neighborhoods of these compacts are proved. These compacts represent a generalization of the concept of a chord-arc curve in
to higher dimensions. The neighborhood size decreases along with an increase in the approximation accuracy. Estimates of the approximation rate as well as the gradient of the approximation functions are made in the same
L
p
norm. |
doi_str_mv | 10.1134/S1063454123020140 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824044301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824044301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1130-914d9304c5d7e7a6a98e3a73f2a98bbc9a2dc92a71caeb82be029e796f75e93</originalsourceid><addsrcrecordid>eNp1UM1KxDAQDqLguvoA3gKeq_ltm-OyuK6w6qHeS5pOtUvT1KQF98V8AV_MLCsoiKcZvj9mPoQuKbmmlIubgpKUCyko44QRKsgRmlHFRZLlUh7HPdLJnj9FZyFsCZEpk3yG7GIYvHtvrR5b12PX4PXnR1eDx6upN3ss4LbH4yvgzYAfnbe42uG19tb1rfkliubCWcAPUze2dWuhDxHXHV46O2gz4gLGcI5OGt0FuPiec1Ssbp-X62TzdHe_XGwSE58hiaKiVpwII-sMMp1qlQPXGW9Y3KrKKM1qo5jOqNFQ5awCwhRkKm0yCYrP0dUhNX72NkEYy62bfLwllCxnggjBCY0qelAZ70Lw0JSDjzX4XUlJue-0_NNp9LCDJ0Rt_wL-J_l_0xfuynmW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824044301</pqid></control><display><type>article</type><title>Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets</title><source>Springer Nature</source><creator>Pavlov, D. A.</creator><creatorcontrib>Pavlov, D. A.</creatorcontrib><description>In this paper, the class of Hölder functions in the sense of the
L
p
norm on certain compacts in
(
m
3) is analyzed, and theorems of the approximation by functions being harmonic in the neighborhoods of these compacts are proved. These compacts represent a generalization of the concept of a chord-arc curve in
to higher dimensions. The neighborhood size decreases along with an increase in the approximation accuracy. Estimates of the approximation rate as well as the gradient of the approximation functions are made in the same
L
p
norm.</description><identifier>ISSN: 1063-4541</identifier><identifier>EISSN: 1934-7855</identifier><identifier>DOI: 10.1134/S1063454123020140</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Approximation ; Compacts ; Harmonic functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Vestnik, St. Petersburg University. Mathematics, 2023, Vol.56 (2), p.190-197</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1063-4541, Vestnik St. Petersburg University, Mathematics, 2023, Vol. 56, No. 2, pp. 190–197. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2023, Vol. 10, No. 2, pp. 259–269.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1130-914d9304c5d7e7a6a98e3a73f2a98bbc9a2dc92a71caeb82be029e796f75e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pavlov, D. A.</creatorcontrib><title>Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets</title><title>Vestnik, St. Petersburg University. Mathematics</title><addtitle>Vestnik St.Petersb. Univ.Math</addtitle><description>In this paper, the class of Hölder functions in the sense of the
L
p
norm on certain compacts in
(
m
3) is analyzed, and theorems of the approximation by functions being harmonic in the neighborhoods of these compacts are proved. These compacts represent a generalization of the concept of a chord-arc curve in
to higher dimensions. The neighborhood size decreases along with an increase in the approximation accuracy. Estimates of the approximation rate as well as the gradient of the approximation functions are made in the same
L
p
norm.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Compacts</subject><subject>Harmonic functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1063-4541</issn><issn>1934-7855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UM1KxDAQDqLguvoA3gKeq_ltm-OyuK6w6qHeS5pOtUvT1KQF98V8AV_MLCsoiKcZvj9mPoQuKbmmlIubgpKUCyko44QRKsgRmlHFRZLlUh7HPdLJnj9FZyFsCZEpk3yG7GIYvHtvrR5b12PX4PXnR1eDx6upN3ss4LbH4yvgzYAfnbe42uG19tb1rfkliubCWcAPUze2dWuhDxHXHV46O2gz4gLGcI5OGt0FuPiec1Ssbp-X62TzdHe_XGwSE58hiaKiVpwII-sMMp1qlQPXGW9Y3KrKKM1qo5jOqNFQ5awCwhRkKm0yCYrP0dUhNX72NkEYy62bfLwllCxnggjBCY0qelAZ70Lw0JSDjzX4XUlJue-0_NNp9LCDJ0Rt_wL-J_l_0xfuynmW</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Pavlov, D. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets</title><author>Pavlov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1130-914d9304c5d7e7a6a98e3a73f2a98bbc9a2dc92a71caeb82be029e796f75e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Compacts</topic><topic>Harmonic functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlov, D. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Vestnik, St. Petersburg University. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets</atitle><jtitle>Vestnik, St. Petersburg University. Mathematics</jtitle><stitle>Vestnik St.Petersb. Univ.Math</stitle><date>2023</date><risdate>2023</risdate><volume>56</volume><issue>2</issue><spage>190</spage><epage>197</epage><pages>190-197</pages><issn>1063-4541</issn><eissn>1934-7855</eissn><abstract>In this paper, the class of Hölder functions in the sense of the
L
p
norm on certain compacts in
(
m
3) is analyzed, and theorems of the approximation by functions being harmonic in the neighborhoods of these compacts are proved. These compacts represent a generalization of the concept of a chord-arc curve in
to higher dimensions. The neighborhood size decreases along with an increase in the approximation accuracy. Estimates of the approximation rate as well as the gradient of the approximation functions are made in the same
L
p
norm.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063454123020140</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-4541 |
ispartof | Vestnik, St. Petersburg University. Mathematics, 2023, Vol.56 (2), p.190-197 |
issn | 1063-4541 1934-7855 |
language | eng |
recordid | cdi_proquest_journals_2824044301 |
source | Springer Nature |
subjects | Analysis Approximation Compacts Harmonic functions Mathematical analysis Mathematics Mathematics and Statistics |
title | Approximation of Hölder Functions in the Lp Norm by Harmonic Functions on Some Multidimensional Compact Sets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20H%C3%B6lder%20Functions%20in%20the%20Lp%20Norm%20by%20Harmonic%20Functions%20on%20Some%20Multidimensional%20Compact%20Sets&rft.jtitle=Vestnik,%20St.%20Petersburg%20University.%20Mathematics&rft.au=Pavlov,%20D.%20A.&rft.date=2023&rft.volume=56&rft.issue=2&rft.spage=190&rft.epage=197&rft.pages=190-197&rft.issn=1063-4541&rft.eissn=1934-7855&rft_id=info:doi/10.1134/S1063454123020140&rft_dat=%3Cproquest_cross%3E2824044301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1130-914d9304c5d7e7a6a98e3a73f2a98bbc9a2dc92a71caeb82be029e796f75e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824044301&rft_id=info:pmid/&rfr_iscdi=true |