Loading…
The pointwise James type constant
In 2008, Takahashi introduced the James type constants. We discuss here the pointwise James type constant: for all x ∈ X , ∥ x ∥ = 1, We show that in almost transitive Banach spaces, the map x ∈ X , ∥ x ∥ = 1 ↦ J ( x, X, t ) is constant. As a consequence and having in mind the Mazur’s rotation probl...
Saved in:
Published in: | Analysis mathematica (Budapest) 2023-06, Vol.49 (2), p.651-659 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-226c78f2765eb13ca5ddd634a19dfa58fd6a3682cf015329d2846b1659c725583 |
container_end_page | 659 |
container_issue | 2 |
container_start_page | 651 |
container_title | Analysis mathematica (Budapest) |
container_volume | 49 |
creator | Rincón-Villamizar, M. A. |
description | In 2008, Takahashi introduced the James type constants. We discuss here the pointwise James type constant: for all
x
∈
X
, ∥
x
∥ = 1,
We show that in almost transitive Banach spaces, the map
x
∈
X
, ∥
x
∥ = 1 ↦
J
(
x, X, t
) is constant. As a consequence and having in mind the Mazur’s rotation problem, we prove that for almost transitive Banach spaces, the condition
J
(
x
,
X
,
t
)
=
2
for some unit vector
x
∈
X
implies that
X
is Hilbert. |
doi_str_mv | 10.1007/s10476-023-0221-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824044473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824044473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-226c78f2765eb13ca5ddd634a19dfa58fd6a3682cf015329d2846b1659c725583</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoOFZ_gLsR19Hk5jlLKVqVgpsK7kKah06xM2OSIv33ThnBlYvL2ZzvXPgQuqTkhhKibjMlXElMgI0HFKsjVFGhNQbF3o5RRShjmGkBp-gs5w0hpJGaVehq9RHqoW-78t3mUD_bbch12Q-hdn2Xi-3KOTqJ9jOHi9-codeH-9X8ES9fFk_zuyV2IHXBANIpHUFJEdaUOSu895JxSxsfrdDRS8ukBhcJFQwaD5rLNZWicQqE0GyGrqfdIfVfu5CL2fS71I0vDWjghHOu2NiiU8ulPucUohlSu7VpbygxBxNmMmFGE-ZgwqiRgYnJY7d7D-lv-X_oB68CXlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824044473</pqid></control><display><type>article</type><title>The pointwise James type constant</title><source>Springer Nature</source><creator>Rincón-Villamizar, M. A.</creator><creatorcontrib>Rincón-Villamizar, M. A.</creatorcontrib><description>In 2008, Takahashi introduced the James type constants. We discuss here the pointwise James type constant: for all
x
∈
X
, ∥
x
∥ = 1,
We show that in almost transitive Banach spaces, the map
x
∈
X
, ∥
x
∥ = 1 ↦
J
(
x, X, t
) is constant. As a consequence and having in mind the Mazur’s rotation problem, we prove that for almost transitive Banach spaces, the condition
J
(
x
,
X
,
t
)
=
2
for some unit vector
x
∈
X
implies that
X
is Hilbert.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-023-0221-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Banach spaces ; Mathematics ; Mathematics and Statistics</subject><ispartof>Analysis mathematica (Budapest), 2023-06, Vol.49 (2), p.651-659</ispartof><rights>Akadémiai Kiadó, Budapest 2023</rights><rights>Akadémiai Kiadó, Budapest 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-226c78f2765eb13ca5ddd634a19dfa58fd6a3682cf015329d2846b1659c725583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rincón-Villamizar, M. A.</creatorcontrib><title>The pointwise James type constant</title><title>Analysis mathematica (Budapest)</title><addtitle>Anal Math</addtitle><description>In 2008, Takahashi introduced the James type constants. We discuss here the pointwise James type constant: for all
x
∈
X
, ∥
x
∥ = 1,
We show that in almost transitive Banach spaces, the map
x
∈
X
, ∥
x
∥ = 1 ↦
J
(
x, X, t
) is constant. As a consequence and having in mind the Mazur’s rotation problem, we prove that for almost transitive Banach spaces, the condition
J
(
x
,
X
,
t
)
=
2
for some unit vector
x
∈
X
implies that
X
is Hilbert.</description><subject>Analysis</subject><subject>Banach spaces</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoOFZ_gLsR19Hk5jlLKVqVgpsK7kKah06xM2OSIv33ThnBlYvL2ZzvXPgQuqTkhhKibjMlXElMgI0HFKsjVFGhNQbF3o5RRShjmGkBp-gs5w0hpJGaVehq9RHqoW-78t3mUD_bbch12Q-hdn2Xi-3KOTqJ9jOHi9-codeH-9X8ES9fFk_zuyV2IHXBANIpHUFJEdaUOSu895JxSxsfrdDRS8ukBhcJFQwaD5rLNZWicQqE0GyGrqfdIfVfu5CL2fS71I0vDWjghHOu2NiiU8ulPucUohlSu7VpbygxBxNmMmFGE-ZgwqiRgYnJY7d7D-lv-X_oB68CXlc</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Rincón-Villamizar, M. A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>The pointwise James type constant</title><author>Rincón-Villamizar, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-226c78f2765eb13ca5ddd634a19dfa58fd6a3682cf015329d2846b1659c725583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Banach spaces</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rincón-Villamizar, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rincón-Villamizar, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The pointwise James type constant</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><stitle>Anal Math</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>49</volume><issue>2</issue><spage>651</spage><epage>659</epage><pages>651-659</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>In 2008, Takahashi introduced the James type constants. We discuss here the pointwise James type constant: for all
x
∈
X
, ∥
x
∥ = 1,
We show that in almost transitive Banach spaces, the map
x
∈
X
, ∥
x
∥ = 1 ↦
J
(
x, X, t
) is constant. As a consequence and having in mind the Mazur’s rotation problem, we prove that for almost transitive Banach spaces, the condition
J
(
x
,
X
,
t
)
=
2
for some unit vector
x
∈
X
implies that
X
is Hilbert.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10476-023-0221-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0133-3852 |
ispartof | Analysis mathematica (Budapest), 2023-06, Vol.49 (2), p.651-659 |
issn | 0133-3852 1588-273X |
language | eng |
recordid | cdi_proquest_journals_2824044473 |
source | Springer Nature |
subjects | Analysis Banach spaces Mathematics Mathematics and Statistics |
title | The pointwise James type constant |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T14%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20pointwise%20James%20type%20constant&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=Rinc%C3%B3n-Villamizar,%20M.%20A.&rft.date=2023-06-01&rft.volume=49&rft.issue=2&rft.spage=651&rft.epage=659&rft.pages=651-659&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-023-0221-7&rft_dat=%3Cproquest_cross%3E2824044473%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-226c78f2765eb13ca5ddd634a19dfa58fd6a3682cf015329d2846b1659c725583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824044473&rft_id=info:pmid/&rfr_iscdi=true |