Loading…
A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability
Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA),...
Saved in:
Published in: | Sustainability 2023-05, Vol.15 (11), p.8608 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3 |
container_end_page | |
container_issue | 11 |
container_start_page | 8608 |
container_title | Sustainability |
container_volume | 15 |
creator | Capoccioni, Fabrizio Bille, Laura Colombo, Federica Contiero, Lidia Martini, Arianna Mattia, Carmine Napolitano, Riccardo Tonachella, Nicolò Toson, Marica Pulcini, Domitilla |
description | Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA), causing Diarrhetic Shellfish Poisoning (DSP). Whenever the OA concentration in shellfish farmed in a specific area exceeds the established legal limit (160 μg·kg−1 of OA equivalents), harvesting activities are compulsorily suspended. This study aimed at developing a machine learning (ML) predictive model for OA bioaccumulation in Mediterranean mussels (Mytilus galloprovincialis) farmed in the coastal area off the Po River Delta (Veneto, Italy), based on oceanographic data measured through remote sensing and data deriving from the monitoring activities performed by official veterinarian authorities to verify the bioaccumulation of OA in the shellfish production sites. LightGBM was used as an ML algorithm. The results of the classification algorithm on the test set showed an accuracy of 82%. Further analyses showed that false negatives were mainly associated with relatively low levels of toxins ( |
doi_str_mv | 10.3390/su15118608 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824059765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824059765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3</originalsourceid><addsrcrecordid>eNpNkUtPGzEUhUcVlRrRbPgFV2KHFPAjkxmzG1CBSEmpCqxHHj_ggjOmfkTKH-zvqhMqtXdzrqyjz8c-VXVCyTnnglzETGtK2wVpP1UTRho6o6QmR__tX6ppjK-kDOdU0MWk-t3Bj2A0qoRbA2uvjQPrA6QXA1fopVJ5k51M6EfwFu7fpJaooFOoAUdY7xK6HOFZOuffg9_iqFA6jHAjw8YcPHvUdx-KhBE6HbDQFDwYeQkdPHrvIHn4aXRWpmTxRROsfIwmghw1LDd7bsmWy5E7cHF8hocck8RRDugw7b5Wn6100Uz_6nH1dPPt8fputrq_XV53q5liok6z1jLN7MCFnVMysJoxaiQXDW-b2moyUKGYFLp8DTdWGTEMat42jDGuCJkzy4-r0w9uyfQrm5j6V5_DWK7sWcvmpBbNoi6usw-XCuUdwdj-PeBGhl1PSb-vqv9XFf8DbuSIvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824059765</pqid></control><display><type>article</type><title>A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability</title><source>Publicly Available Content Database</source><creator>Capoccioni, Fabrizio ; Bille, Laura ; Colombo, Federica ; Contiero, Lidia ; Martini, Arianna ; Mattia, Carmine ; Napolitano, Riccardo ; Tonachella, Nicolò ; Toson, Marica ; Pulcini, Domitilla</creator><creatorcontrib>Capoccioni, Fabrizio ; Bille, Laura ; Colombo, Federica ; Contiero, Lidia ; Martini, Arianna ; Mattia, Carmine ; Napolitano, Riccardo ; Tonachella, Nicolò ; Toson, Marica ; Pulcini, Domitilla</creatorcontrib><description>Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA), causing Diarrhetic Shellfish Poisoning (DSP). Whenever the OA concentration in shellfish farmed in a specific area exceeds the established legal limit (160 μg·kg−1 of OA equivalents), harvesting activities are compulsorily suspended. This study aimed at developing a machine learning (ML) predictive model for OA bioaccumulation in Mediterranean mussels (Mytilus galloprovincialis) farmed in the coastal area off the Po River Delta (Veneto, Italy), based on oceanographic data measured through remote sensing and data deriving from the monitoring activities performed by official veterinarian authorities to verify the bioaccumulation of OA in the shellfish production sites. LightGBM was used as an ML algorithm. The results of the classification algorithm on the test set showed an accuracy of 82%. Further analyses showed that false negatives were mainly associated with relatively low levels of toxins (<100 μg·kg−1), since the algorithm tended to classify low concentrations of OA as negative samples, while true positives had higher mean values of toxins (139 μg·kg−1). The results of the model could be used to build up an online early warning system made available to shellfish farmers of the study area, aimed at increasing the economic and environmental sustainability of these production activities and reducing the risk of massive product losses.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15118608</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; Algae ; Algorithms ; Aquaculture ; Aquatic ecosystems ; Bioaccumulation ; Coastal zone ; Coasts ; Data collection ; Diarrhetic shellfish poisoning ; Dinoflagellates ; Farmers ; Farms ; Harvesting ; Low concentrations ; Microorganisms ; Mollusks ; Mussels ; Mytilus galloprovincialis ; Okadaic acid ; Phytoplankton ; Prediction models ; Remote sensing ; Risk reduction ; Shellfish ; Shellfish farming ; Sustainability ; Toxins ; Veterinary medicine ; Water quality</subject><ispartof>Sustainability, 2023-05, Vol.15 (11), p.8608</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3</citedby><cites>FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3</cites><orcidid>0000-0002-4752-6881 ; 0009-0009-4579-9622 ; 0000-0002-1955-6602 ; 0000-0001-5283-7521 ; 0000-0002-5484-6381 ; 0000-0001-6669-7355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2824059765/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2824059765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Capoccioni, Fabrizio</creatorcontrib><creatorcontrib>Bille, Laura</creatorcontrib><creatorcontrib>Colombo, Federica</creatorcontrib><creatorcontrib>Contiero, Lidia</creatorcontrib><creatorcontrib>Martini, Arianna</creatorcontrib><creatorcontrib>Mattia, Carmine</creatorcontrib><creatorcontrib>Napolitano, Riccardo</creatorcontrib><creatorcontrib>Tonachella, Nicolò</creatorcontrib><creatorcontrib>Toson, Marica</creatorcontrib><creatorcontrib>Pulcini, Domitilla</creatorcontrib><title>A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability</title><title>Sustainability</title><description>Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA), causing Diarrhetic Shellfish Poisoning (DSP). Whenever the OA concentration in shellfish farmed in a specific area exceeds the established legal limit (160 μg·kg−1 of OA equivalents), harvesting activities are compulsorily suspended. This study aimed at developing a machine learning (ML) predictive model for OA bioaccumulation in Mediterranean mussels (Mytilus galloprovincialis) farmed in the coastal area off the Po River Delta (Veneto, Italy), based on oceanographic data measured through remote sensing and data deriving from the monitoring activities performed by official veterinarian authorities to verify the bioaccumulation of OA in the shellfish production sites. LightGBM was used as an ML algorithm. The results of the classification algorithm on the test set showed an accuracy of 82%. Further analyses showed that false negatives were mainly associated with relatively low levels of toxins (<100 μg·kg−1), since the algorithm tended to classify low concentrations of OA as negative samples, while true positives had higher mean values of toxins (139 μg·kg−1). The results of the model could be used to build up an online early warning system made available to shellfish farmers of the study area, aimed at increasing the economic and environmental sustainability of these production activities and reducing the risk of massive product losses.</description><subject>Agriculture</subject><subject>Algae</subject><subject>Algorithms</subject><subject>Aquaculture</subject><subject>Aquatic ecosystems</subject><subject>Bioaccumulation</subject><subject>Coastal zone</subject><subject>Coasts</subject><subject>Data collection</subject><subject>Diarrhetic shellfish poisoning</subject><subject>Dinoflagellates</subject><subject>Farmers</subject><subject>Farms</subject><subject>Harvesting</subject><subject>Low concentrations</subject><subject>Microorganisms</subject><subject>Mollusks</subject><subject>Mussels</subject><subject>Mytilus galloprovincialis</subject><subject>Okadaic acid</subject><subject>Phytoplankton</subject><subject>Prediction models</subject><subject>Remote sensing</subject><subject>Risk reduction</subject><subject>Shellfish</subject><subject>Shellfish farming</subject><subject>Sustainability</subject><subject>Toxins</subject><subject>Veterinary medicine</subject><subject>Water quality</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkUtPGzEUhUcVlRrRbPgFV2KHFPAjkxmzG1CBSEmpCqxHHj_ggjOmfkTKH-zvqhMqtXdzrqyjz8c-VXVCyTnnglzETGtK2wVpP1UTRho6o6QmR__tX6ppjK-kDOdU0MWk-t3Bj2A0qoRbA2uvjQPrA6QXA1fopVJ5k51M6EfwFu7fpJaooFOoAUdY7xK6HOFZOuffg9_iqFA6jHAjw8YcPHvUdx-KhBE6HbDQFDwYeQkdPHrvIHn4aXRWpmTxRROsfIwmghw1LDd7bsmWy5E7cHF8hocck8RRDugw7b5Wn6100Uz_6nH1dPPt8fputrq_XV53q5liok6z1jLN7MCFnVMysJoxaiQXDW-b2moyUKGYFLp8DTdWGTEMat42jDGuCJkzy4-r0w9uyfQrm5j6V5_DWK7sWcvmpBbNoi6usw-XCuUdwdj-PeBGhl1PSb-vqv9XFf8DbuSIvQ</recordid><startdate>20230525</startdate><enddate>20230525</enddate><creator>Capoccioni, Fabrizio</creator><creator>Bille, Laura</creator><creator>Colombo, Federica</creator><creator>Contiero, Lidia</creator><creator>Martini, Arianna</creator><creator>Mattia, Carmine</creator><creator>Napolitano, Riccardo</creator><creator>Tonachella, Nicolò</creator><creator>Toson, Marica</creator><creator>Pulcini, Domitilla</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4752-6881</orcidid><orcidid>https://orcid.org/0009-0009-4579-9622</orcidid><orcidid>https://orcid.org/0000-0002-1955-6602</orcidid><orcidid>https://orcid.org/0000-0001-5283-7521</orcidid><orcidid>https://orcid.org/0000-0002-5484-6381</orcidid><orcidid>https://orcid.org/0000-0001-6669-7355</orcidid></search><sort><creationdate>20230525</creationdate><title>A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability</title><author>Capoccioni, Fabrizio ; Bille, Laura ; Colombo, Federica ; Contiero, Lidia ; Martini, Arianna ; Mattia, Carmine ; Napolitano, Riccardo ; Tonachella, Nicolò ; Toson, Marica ; Pulcini, Domitilla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Algae</topic><topic>Algorithms</topic><topic>Aquaculture</topic><topic>Aquatic ecosystems</topic><topic>Bioaccumulation</topic><topic>Coastal zone</topic><topic>Coasts</topic><topic>Data collection</topic><topic>Diarrhetic shellfish poisoning</topic><topic>Dinoflagellates</topic><topic>Farmers</topic><topic>Farms</topic><topic>Harvesting</topic><topic>Low concentrations</topic><topic>Microorganisms</topic><topic>Mollusks</topic><topic>Mussels</topic><topic>Mytilus galloprovincialis</topic><topic>Okadaic acid</topic><topic>Phytoplankton</topic><topic>Prediction models</topic><topic>Remote sensing</topic><topic>Risk reduction</topic><topic>Shellfish</topic><topic>Shellfish farming</topic><topic>Sustainability</topic><topic>Toxins</topic><topic>Veterinary medicine</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capoccioni, Fabrizio</creatorcontrib><creatorcontrib>Bille, Laura</creatorcontrib><creatorcontrib>Colombo, Federica</creatorcontrib><creatorcontrib>Contiero, Lidia</creatorcontrib><creatorcontrib>Martini, Arianna</creatorcontrib><creatorcontrib>Mattia, Carmine</creatorcontrib><creatorcontrib>Napolitano, Riccardo</creatorcontrib><creatorcontrib>Tonachella, Nicolò</creatorcontrib><creatorcontrib>Toson, Marica</creatorcontrib><creatorcontrib>Pulcini, Domitilla</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capoccioni, Fabrizio</au><au>Bille, Laura</au><au>Colombo, Federica</au><au>Contiero, Lidia</au><au>Martini, Arianna</au><au>Mattia, Carmine</au><au>Napolitano, Riccardo</au><au>Tonachella, Nicolò</au><au>Toson, Marica</au><au>Pulcini, Domitilla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability</atitle><jtitle>Sustainability</jtitle><date>2023-05-25</date><risdate>2023</risdate><volume>15</volume><issue>11</issue><spage>8608</spage><pages>8608-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA), causing Diarrhetic Shellfish Poisoning (DSP). Whenever the OA concentration in shellfish farmed in a specific area exceeds the established legal limit (160 μg·kg−1 of OA equivalents), harvesting activities are compulsorily suspended. This study aimed at developing a machine learning (ML) predictive model for OA bioaccumulation in Mediterranean mussels (Mytilus galloprovincialis) farmed in the coastal area off the Po River Delta (Veneto, Italy), based on oceanographic data measured through remote sensing and data deriving from the monitoring activities performed by official veterinarian authorities to verify the bioaccumulation of OA in the shellfish production sites. LightGBM was used as an ML algorithm. The results of the classification algorithm on the test set showed an accuracy of 82%. Further analyses showed that false negatives were mainly associated with relatively low levels of toxins (<100 μg·kg−1), since the algorithm tended to classify low concentrations of OA as negative samples, while true positives had higher mean values of toxins (139 μg·kg−1). The results of the model could be used to build up an online early warning system made available to shellfish farmers of the study area, aimed at increasing the economic and environmental sustainability of these production activities and reducing the risk of massive product losses.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15118608</doi><orcidid>https://orcid.org/0000-0002-4752-6881</orcidid><orcidid>https://orcid.org/0009-0009-4579-9622</orcidid><orcidid>https://orcid.org/0000-0002-1955-6602</orcidid><orcidid>https://orcid.org/0000-0001-5283-7521</orcidid><orcidid>https://orcid.org/0000-0002-5484-6381</orcidid><orcidid>https://orcid.org/0000-0001-6669-7355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2023-05, Vol.15 (11), p.8608 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2824059765 |
source | Publicly Available Content Database |
subjects | Agriculture Algae Algorithms Aquaculture Aquatic ecosystems Bioaccumulation Coastal zone Coasts Data collection Diarrhetic shellfish poisoning Dinoflagellates Farmers Farms Harvesting Low concentrations Microorganisms Mollusks Mussels Mytilus galloprovincialis Okadaic acid Phytoplankton Prediction models Remote sensing Risk reduction Shellfish Shellfish farming Sustainability Toxins Veterinary medicine Water quality |
title | A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Predictive%20Model%20for%20the%20Bioaccumulation%20of%20Okadaic%20Acid%20in%20Mytilus%20galloprovincialis%20Farmed%20in%20the%20Northern%20Adriatic%20Sea:%20A%20Tool%20to%20Reduce%20Product%20Losses%20and%20Improve%20Mussel%20Farming%20Sustainability&rft.jtitle=Sustainability&rft.au=Capoccioni,%20Fabrizio&rft.date=2023-05-25&rft.volume=15&rft.issue=11&rft.spage=8608&rft.pages=8608-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15118608&rft_dat=%3Cproquest_cross%3E2824059765%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824059765&rft_id=info:pmid/&rfr_iscdi=true |