Loading…

A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability

Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA),...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2023-05, Vol.15 (11), p.8608
Main Authors: Capoccioni, Fabrizio, Bille, Laura, Colombo, Federica, Contiero, Lidia, Martini, Arianna, Mattia, Carmine, Napolitano, Riccardo, Tonachella, Nicolò, Toson, Marica, Pulcini, Domitilla
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3
cites cdi_FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3
container_end_page
container_issue 11
container_start_page 8608
container_title Sustainability
container_volume 15
creator Capoccioni, Fabrizio
Bille, Laura
Colombo, Federica
Contiero, Lidia
Martini, Arianna
Mattia, Carmine
Napolitano, Riccardo
Tonachella, Nicolò
Toson, Marica
Pulcini, Domitilla
description Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA), causing Diarrhetic Shellfish Poisoning (DSP). Whenever the OA concentration in shellfish farmed in a specific area exceeds the established legal limit (160 μg·kg−1 of OA equivalents), harvesting activities are compulsorily suspended. This study aimed at developing a machine learning (ML) predictive model for OA bioaccumulation in Mediterranean mussels (Mytilus galloprovincialis) farmed in the coastal area off the Po River Delta (Veneto, Italy), based on oceanographic data measured through remote sensing and data deriving from the monitoring activities performed by official veterinarian authorities to verify the bioaccumulation of OA in the shellfish production sites. LightGBM was used as an ML algorithm. The results of the classification algorithm on the test set showed an accuracy of 82%. Further analyses showed that false negatives were mainly associated with relatively low levels of toxins (
doi_str_mv 10.3390/su15118608
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824059765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824059765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3</originalsourceid><addsrcrecordid>eNpNkUtPGzEUhUcVlRrRbPgFV2KHFPAjkxmzG1CBSEmpCqxHHj_ggjOmfkTKH-zvqhMqtXdzrqyjz8c-VXVCyTnnglzETGtK2wVpP1UTRho6o6QmR__tX6ppjK-kDOdU0MWk-t3Bj2A0qoRbA2uvjQPrA6QXA1fopVJ5k51M6EfwFu7fpJaooFOoAUdY7xK6HOFZOuffg9_iqFA6jHAjw8YcPHvUdx-KhBE6HbDQFDwYeQkdPHrvIHn4aXRWpmTxRROsfIwmghw1LDd7bsmWy5E7cHF8hocck8RRDugw7b5Wn6100Uz_6nH1dPPt8fputrq_XV53q5liok6z1jLN7MCFnVMysJoxaiQXDW-b2moyUKGYFLp8DTdWGTEMat42jDGuCJkzy4-r0w9uyfQrm5j6V5_DWK7sWcvmpBbNoi6usw-XCuUdwdj-PeBGhl1PSb-vqv9XFf8DbuSIvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824059765</pqid></control><display><type>article</type><title>A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability</title><source>Publicly Available Content Database</source><creator>Capoccioni, Fabrizio ; Bille, Laura ; Colombo, Federica ; Contiero, Lidia ; Martini, Arianna ; Mattia, Carmine ; Napolitano, Riccardo ; Tonachella, Nicolò ; Toson, Marica ; Pulcini, Domitilla</creator><creatorcontrib>Capoccioni, Fabrizio ; Bille, Laura ; Colombo, Federica ; Contiero, Lidia ; Martini, Arianna ; Mattia, Carmine ; Napolitano, Riccardo ; Tonachella, Nicolò ; Toson, Marica ; Pulcini, Domitilla</creatorcontrib><description>Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA), causing Diarrhetic Shellfish Poisoning (DSP). Whenever the OA concentration in shellfish farmed in a specific area exceeds the established legal limit (160 μg·kg−1 of OA equivalents), harvesting activities are compulsorily suspended. This study aimed at developing a machine learning (ML) predictive model for OA bioaccumulation in Mediterranean mussels (Mytilus galloprovincialis) farmed in the coastal area off the Po River Delta (Veneto, Italy), based on oceanographic data measured through remote sensing and data deriving from the monitoring activities performed by official veterinarian authorities to verify the bioaccumulation of OA in the shellfish production sites. LightGBM was used as an ML algorithm. The results of the classification algorithm on the test set showed an accuracy of 82%. Further analyses showed that false negatives were mainly associated with relatively low levels of toxins (&lt;100 μg·kg−1), since the algorithm tended to classify low concentrations of OA as negative samples, while true positives had higher mean values of toxins (139 μg·kg−1). The results of the model could be used to build up an online early warning system made available to shellfish farmers of the study area, aimed at increasing the economic and environmental sustainability of these production activities and reducing the risk of massive product losses.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15118608</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; Algae ; Algorithms ; Aquaculture ; Aquatic ecosystems ; Bioaccumulation ; Coastal zone ; Coasts ; Data collection ; Diarrhetic shellfish poisoning ; Dinoflagellates ; Farmers ; Farms ; Harvesting ; Low concentrations ; Microorganisms ; Mollusks ; Mussels ; Mytilus galloprovincialis ; Okadaic acid ; Phytoplankton ; Prediction models ; Remote sensing ; Risk reduction ; Shellfish ; Shellfish farming ; Sustainability ; Toxins ; Veterinary medicine ; Water quality</subject><ispartof>Sustainability, 2023-05, Vol.15 (11), p.8608</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3</citedby><cites>FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3</cites><orcidid>0000-0002-4752-6881 ; 0009-0009-4579-9622 ; 0000-0002-1955-6602 ; 0000-0001-5283-7521 ; 0000-0002-5484-6381 ; 0000-0001-6669-7355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2824059765/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2824059765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Capoccioni, Fabrizio</creatorcontrib><creatorcontrib>Bille, Laura</creatorcontrib><creatorcontrib>Colombo, Federica</creatorcontrib><creatorcontrib>Contiero, Lidia</creatorcontrib><creatorcontrib>Martini, Arianna</creatorcontrib><creatorcontrib>Mattia, Carmine</creatorcontrib><creatorcontrib>Napolitano, Riccardo</creatorcontrib><creatorcontrib>Tonachella, Nicolò</creatorcontrib><creatorcontrib>Toson, Marica</creatorcontrib><creatorcontrib>Pulcini, Domitilla</creatorcontrib><title>A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability</title><title>Sustainability</title><description>Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA), causing Diarrhetic Shellfish Poisoning (DSP). Whenever the OA concentration in shellfish farmed in a specific area exceeds the established legal limit (160 μg·kg−1 of OA equivalents), harvesting activities are compulsorily suspended. This study aimed at developing a machine learning (ML) predictive model for OA bioaccumulation in Mediterranean mussels (Mytilus galloprovincialis) farmed in the coastal area off the Po River Delta (Veneto, Italy), based on oceanographic data measured through remote sensing and data deriving from the monitoring activities performed by official veterinarian authorities to verify the bioaccumulation of OA in the shellfish production sites. LightGBM was used as an ML algorithm. The results of the classification algorithm on the test set showed an accuracy of 82%. Further analyses showed that false negatives were mainly associated with relatively low levels of toxins (&lt;100 μg·kg−1), since the algorithm tended to classify low concentrations of OA as negative samples, while true positives had higher mean values of toxins (139 μg·kg−1). The results of the model could be used to build up an online early warning system made available to shellfish farmers of the study area, aimed at increasing the economic and environmental sustainability of these production activities and reducing the risk of massive product losses.</description><subject>Agriculture</subject><subject>Algae</subject><subject>Algorithms</subject><subject>Aquaculture</subject><subject>Aquatic ecosystems</subject><subject>Bioaccumulation</subject><subject>Coastal zone</subject><subject>Coasts</subject><subject>Data collection</subject><subject>Diarrhetic shellfish poisoning</subject><subject>Dinoflagellates</subject><subject>Farmers</subject><subject>Farms</subject><subject>Harvesting</subject><subject>Low concentrations</subject><subject>Microorganisms</subject><subject>Mollusks</subject><subject>Mussels</subject><subject>Mytilus galloprovincialis</subject><subject>Okadaic acid</subject><subject>Phytoplankton</subject><subject>Prediction models</subject><subject>Remote sensing</subject><subject>Risk reduction</subject><subject>Shellfish</subject><subject>Shellfish farming</subject><subject>Sustainability</subject><subject>Toxins</subject><subject>Veterinary medicine</subject><subject>Water quality</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkUtPGzEUhUcVlRrRbPgFV2KHFPAjkxmzG1CBSEmpCqxHHj_ggjOmfkTKH-zvqhMqtXdzrqyjz8c-VXVCyTnnglzETGtK2wVpP1UTRho6o6QmR__tX6ppjK-kDOdU0MWk-t3Bj2A0qoRbA2uvjQPrA6QXA1fopVJ5k51M6EfwFu7fpJaooFOoAUdY7xK6HOFZOuffg9_iqFA6jHAjw8YcPHvUdx-KhBE6HbDQFDwYeQkdPHrvIHn4aXRWpmTxRROsfIwmghw1LDd7bsmWy5E7cHF8hocck8RRDugw7b5Wn6100Uz_6nH1dPPt8fputrq_XV53q5liok6z1jLN7MCFnVMysJoxaiQXDW-b2moyUKGYFLp8DTdWGTEMat42jDGuCJkzy4-r0w9uyfQrm5j6V5_DWK7sWcvmpBbNoi6usw-XCuUdwdj-PeBGhl1PSb-vqv9XFf8DbuSIvQ</recordid><startdate>20230525</startdate><enddate>20230525</enddate><creator>Capoccioni, Fabrizio</creator><creator>Bille, Laura</creator><creator>Colombo, Federica</creator><creator>Contiero, Lidia</creator><creator>Martini, Arianna</creator><creator>Mattia, Carmine</creator><creator>Napolitano, Riccardo</creator><creator>Tonachella, Nicolò</creator><creator>Toson, Marica</creator><creator>Pulcini, Domitilla</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4752-6881</orcidid><orcidid>https://orcid.org/0009-0009-4579-9622</orcidid><orcidid>https://orcid.org/0000-0002-1955-6602</orcidid><orcidid>https://orcid.org/0000-0001-5283-7521</orcidid><orcidid>https://orcid.org/0000-0002-5484-6381</orcidid><orcidid>https://orcid.org/0000-0001-6669-7355</orcidid></search><sort><creationdate>20230525</creationdate><title>A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability</title><author>Capoccioni, Fabrizio ; Bille, Laura ; Colombo, Federica ; Contiero, Lidia ; Martini, Arianna ; Mattia, Carmine ; Napolitano, Riccardo ; Tonachella, Nicolò ; Toson, Marica ; Pulcini, Domitilla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Algae</topic><topic>Algorithms</topic><topic>Aquaculture</topic><topic>Aquatic ecosystems</topic><topic>Bioaccumulation</topic><topic>Coastal zone</topic><topic>Coasts</topic><topic>Data collection</topic><topic>Diarrhetic shellfish poisoning</topic><topic>Dinoflagellates</topic><topic>Farmers</topic><topic>Farms</topic><topic>Harvesting</topic><topic>Low concentrations</topic><topic>Microorganisms</topic><topic>Mollusks</topic><topic>Mussels</topic><topic>Mytilus galloprovincialis</topic><topic>Okadaic acid</topic><topic>Phytoplankton</topic><topic>Prediction models</topic><topic>Remote sensing</topic><topic>Risk reduction</topic><topic>Shellfish</topic><topic>Shellfish farming</topic><topic>Sustainability</topic><topic>Toxins</topic><topic>Veterinary medicine</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capoccioni, Fabrizio</creatorcontrib><creatorcontrib>Bille, Laura</creatorcontrib><creatorcontrib>Colombo, Federica</creatorcontrib><creatorcontrib>Contiero, Lidia</creatorcontrib><creatorcontrib>Martini, Arianna</creatorcontrib><creatorcontrib>Mattia, Carmine</creatorcontrib><creatorcontrib>Napolitano, Riccardo</creatorcontrib><creatorcontrib>Tonachella, Nicolò</creatorcontrib><creatorcontrib>Toson, Marica</creatorcontrib><creatorcontrib>Pulcini, Domitilla</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capoccioni, Fabrizio</au><au>Bille, Laura</au><au>Colombo, Federica</au><au>Contiero, Lidia</au><au>Martini, Arianna</au><au>Mattia, Carmine</au><au>Napolitano, Riccardo</au><au>Tonachella, Nicolò</au><au>Toson, Marica</au><au>Pulcini, Domitilla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability</atitle><jtitle>Sustainability</jtitle><date>2023-05-25</date><risdate>2023</risdate><volume>15</volume><issue>11</issue><spage>8608</spage><pages>8608-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA), causing Diarrhetic Shellfish Poisoning (DSP). Whenever the OA concentration in shellfish farmed in a specific area exceeds the established legal limit (160 μg·kg−1 of OA equivalents), harvesting activities are compulsorily suspended. This study aimed at developing a machine learning (ML) predictive model for OA bioaccumulation in Mediterranean mussels (Mytilus galloprovincialis) farmed in the coastal area off the Po River Delta (Veneto, Italy), based on oceanographic data measured through remote sensing and data deriving from the monitoring activities performed by official veterinarian authorities to verify the bioaccumulation of OA in the shellfish production sites. LightGBM was used as an ML algorithm. The results of the classification algorithm on the test set showed an accuracy of 82%. Further analyses showed that false negatives were mainly associated with relatively low levels of toxins (&lt;100 μg·kg−1), since the algorithm tended to classify low concentrations of OA as negative samples, while true positives had higher mean values of toxins (139 μg·kg−1). The results of the model could be used to build up an online early warning system made available to shellfish farmers of the study area, aimed at increasing the economic and environmental sustainability of these production activities and reducing the risk of massive product losses.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15118608</doi><orcidid>https://orcid.org/0000-0002-4752-6881</orcidid><orcidid>https://orcid.org/0009-0009-4579-9622</orcidid><orcidid>https://orcid.org/0000-0002-1955-6602</orcidid><orcidid>https://orcid.org/0000-0001-5283-7521</orcidid><orcidid>https://orcid.org/0000-0002-5484-6381</orcidid><orcidid>https://orcid.org/0000-0001-6669-7355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2023-05, Vol.15 (11), p.8608
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2824059765
source Publicly Available Content Database
subjects Agriculture
Algae
Algorithms
Aquaculture
Aquatic ecosystems
Bioaccumulation
Coastal zone
Coasts
Data collection
Diarrhetic shellfish poisoning
Dinoflagellates
Farmers
Farms
Harvesting
Low concentrations
Microorganisms
Mollusks
Mussels
Mytilus galloprovincialis
Okadaic acid
Phytoplankton
Prediction models
Remote sensing
Risk reduction
Shellfish
Shellfish farming
Sustainability
Toxins
Veterinary medicine
Water quality
title A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Predictive%20Model%20for%20the%20Bioaccumulation%20of%20Okadaic%20Acid%20in%20Mytilus%20galloprovincialis%20Farmed%20in%20the%20Northern%20Adriatic%20Sea:%20A%20Tool%20to%20Reduce%20Product%20Losses%20and%20Improve%20Mussel%20Farming%20Sustainability&rft.jtitle=Sustainability&rft.au=Capoccioni,%20Fabrizio&rft.date=2023-05-25&rft.volume=15&rft.issue=11&rft.spage=8608&rft.pages=8608-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15118608&rft_dat=%3Cproquest_cross%3E2824059765%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-8f2d2fb39f410b25221ea3973875fd0b19c2a9d1913efce9bbc4872223c0042f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824059765&rft_id=info:pmid/&rfr_iscdi=true