Loading…

Dynamic State Estimation for Synchronous Generator with Communication Constraints: An Improved Regularized Particle Filter Approach

Accurate acquisition of real-time electromechanical dynamic states of synchronous generators plays an essential role in power systems. The phasor measurement units (PMUs) are widely used in data acquisition of synchronous generator operation parameters, which can capture the dynamic responses of gen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on sustainable computing 2023-04, Vol.8 (2), p.1-10
Main Authors: Bai, Xingzhen, Qin, Feiyu, Ge, Leijiao, Zeng, Lin, Zheng, Xinlei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-6a607a81afc474f6ee9b98c113e13d1403c3f8fcbf8e4206e5e1e62ce278399c3
cites cdi_FETCH-LOGICAL-c295t-6a607a81afc474f6ee9b98c113e13d1403c3f8fcbf8e4206e5e1e62ce278399c3
container_end_page 10
container_issue 2
container_start_page 1
container_title IEEE transactions on sustainable computing
container_volume 8
creator Bai, Xingzhen
Qin, Feiyu
Ge, Leijiao
Zeng, Lin
Zheng, Xinlei
description Accurate acquisition of real-time electromechanical dynamic states of synchronous generators plays an essential role in power systems. The phasor measurement units (PMUs) are widely used in data acquisition of synchronous generator operation parameters, which can capture the dynamic responses of generators. However, distortion of measurement results of synchronous generator operation parameters is inevitable due to various reasons, such as device failure and operating environment interference and so on. Meanwhile, it is hard to transmit gigantic volumes of data to the information center due to limited communication bandwidth. To tackle these challenges, this paper proposes a dynamic state estimation method for synchronous generators with event-triggered scheme. The proposed method first establishes a non-linear model to describe the dynamics of generators. Then, a measure-based event-triggering scheme is adopted to schedule the data transmission from the sensor to estimator, thus reducing communication pressure and enhanced resource utilization. Finally, an improved regularized particle filter (IRPF) algorithm is designed to guarantee the estimation performance. To this end, the genetic algorithm is used to optimize the particles sampled by regularized particle filter algorithm, which can solve particle exhaustion problem. The CEPRI7 system is used to verify the performance of the proposed method.
doi_str_mv 10.1109/TSUSC.2022.3221090
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824113399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9944921</ieee_id><sourcerecordid>2824113399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6a607a81afc474f6ee9b98c113e13d1403c3f8fcbf8e4206e5e1e62ce278399c3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhejiUT5A3rTxOthP8a2ekcmIAmJxsH1UsqZlGwttp0Gb_3jFiFcnTcnz3tO8kTRHcEDQjB_XJTLshhQTOmAURo2-CLqUZZlMcs4vjznnF5Hfee2GGOSZUNOSS_6fd5r0SqJSi88oLHzqhVeGY1qY1G513JjjTadQ1PQYIUP22_lN6gwbdtpJY9wYbTzVijt3RMaaTRrd9Z8wRq9w0fXCKt-Qn4T1ivZAJqoxoNFo12AhNzcRle1aBz0T_MmWk7Gi-Ilnr9OZ8VoHkvKhz5ORYozkRNRyyRL6hSAr3guCWFA2JokmElW57Vc1TkkFKcwBAIplUCznHEu2U30cLwb3n524Hy1NZ3V4WVFc5qEQwELFD1S0hrnLNTVzgYndl8RXB18V_--q4Pv6uQ7lO6PJQUA5wLnSRIssz89N363</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824113399</pqid></control><display><type>article</type><title>Dynamic State Estimation for Synchronous Generator with Communication Constraints: An Improved Regularized Particle Filter Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bai, Xingzhen ; Qin, Feiyu ; Ge, Leijiao ; Zeng, Lin ; Zheng, Xinlei</creator><creatorcontrib>Bai, Xingzhen ; Qin, Feiyu ; Ge, Leijiao ; Zeng, Lin ; Zheng, Xinlei</creatorcontrib><description>Accurate acquisition of real-time electromechanical dynamic states of synchronous generators plays an essential role in power systems. The phasor measurement units (PMUs) are widely used in data acquisition of synchronous generator operation parameters, which can capture the dynamic responses of generators. However, distortion of measurement results of synchronous generator operation parameters is inevitable due to various reasons, such as device failure and operating environment interference and so on. Meanwhile, it is hard to transmit gigantic volumes of data to the information center due to limited communication bandwidth. To tackle these challenges, this paper proposes a dynamic state estimation method for synchronous generators with event-triggered scheme. The proposed method first establishes a non-linear model to describe the dynamics of generators. Then, a measure-based event-triggering scheme is adopted to schedule the data transmission from the sensor to estimator, thus reducing communication pressure and enhanced resource utilization. Finally, an improved regularized particle filter (IRPF) algorithm is designed to guarantee the estimation performance. To this end, the genetic algorithm is used to optimize the particles sampled by regularized particle filter algorithm, which can solve particle exhaustion problem. The CEPRI7 system is used to verify the performance of the proposed method.</description><identifier>ISSN: 2377-3782</identifier><identifier>EISSN: 2377-3790</identifier><identifier>DOI: 10.1109/TSUSC.2022.3221090</identifier><identifier>CODEN: ITSCBE</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Communication ; Data acquisition ; Data transmission ; Dynamic state estimation ; event-triggering scheme ; Generators ; Genetic algorithms ; Information centers ; Mathematical models ; Measuring instruments ; Parameters ; Particle filters ; Particle measurements ; Phasor measurement units ; Phasors ; Power system dynamics ; regularized particle filter ; Resource utilization ; State estimation ; Synchronous generators ; Synchronous machines ; wide-area measurement system (WAMS)</subject><ispartof>IEEE transactions on sustainable computing, 2023-04, Vol.8 (2), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-6a607a81afc474f6ee9b98c113e13d1403c3f8fcbf8e4206e5e1e62ce278399c3</citedby><cites>FETCH-LOGICAL-c295t-6a607a81afc474f6ee9b98c113e13d1403c3f8fcbf8e4206e5e1e62ce278399c3</cites><orcidid>0000-0001-6310-6986 ; 0000-0002-1134-594X ; 0000-0001-6754-8490 ; 0000-0003-3271-6903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9944921$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Bai, Xingzhen</creatorcontrib><creatorcontrib>Qin, Feiyu</creatorcontrib><creatorcontrib>Ge, Leijiao</creatorcontrib><creatorcontrib>Zeng, Lin</creatorcontrib><creatorcontrib>Zheng, Xinlei</creatorcontrib><title>Dynamic State Estimation for Synchronous Generator with Communication Constraints: An Improved Regularized Particle Filter Approach</title><title>IEEE transactions on sustainable computing</title><addtitle>TSUSC</addtitle><description>Accurate acquisition of real-time electromechanical dynamic states of synchronous generators plays an essential role in power systems. The phasor measurement units (PMUs) are widely used in data acquisition of synchronous generator operation parameters, which can capture the dynamic responses of generators. However, distortion of measurement results of synchronous generator operation parameters is inevitable due to various reasons, such as device failure and operating environment interference and so on. Meanwhile, it is hard to transmit gigantic volumes of data to the information center due to limited communication bandwidth. To tackle these challenges, this paper proposes a dynamic state estimation method for synchronous generators with event-triggered scheme. The proposed method first establishes a non-linear model to describe the dynamics of generators. Then, a measure-based event-triggering scheme is adopted to schedule the data transmission from the sensor to estimator, thus reducing communication pressure and enhanced resource utilization. Finally, an improved regularized particle filter (IRPF) algorithm is designed to guarantee the estimation performance. To this end, the genetic algorithm is used to optimize the particles sampled by regularized particle filter algorithm, which can solve particle exhaustion problem. The CEPRI7 system is used to verify the performance of the proposed method.</description><subject>Algorithms</subject><subject>Communication</subject><subject>Data acquisition</subject><subject>Data transmission</subject><subject>Dynamic state estimation</subject><subject>event-triggering scheme</subject><subject>Generators</subject><subject>Genetic algorithms</subject><subject>Information centers</subject><subject>Mathematical models</subject><subject>Measuring instruments</subject><subject>Parameters</subject><subject>Particle filters</subject><subject>Particle measurements</subject><subject>Phasor measurement units</subject><subject>Phasors</subject><subject>Power system dynamics</subject><subject>regularized particle filter</subject><subject>Resource utilization</subject><subject>State estimation</subject><subject>Synchronous generators</subject><subject>Synchronous machines</subject><subject>wide-area measurement system (WAMS)</subject><issn>2377-3782</issn><issn>2377-3790</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUhhejiUT5A3rTxOthP8a2ekcmIAmJxsH1UsqZlGwttp0Gb_3jFiFcnTcnz3tO8kTRHcEDQjB_XJTLshhQTOmAURo2-CLqUZZlMcs4vjznnF5Hfee2GGOSZUNOSS_6fd5r0SqJSi88oLHzqhVeGY1qY1G513JjjTadQ1PQYIUP22_lN6gwbdtpJY9wYbTzVijt3RMaaTRrd9Z8wRq9w0fXCKt-Qn4T1ivZAJqoxoNFo12AhNzcRle1aBz0T_MmWk7Gi-Ilnr9OZ8VoHkvKhz5ORYozkRNRyyRL6hSAr3guCWFA2JokmElW57Vc1TkkFKcwBAIplUCznHEu2U30cLwb3n524Hy1NZ3V4WVFc5qEQwELFD1S0hrnLNTVzgYndl8RXB18V_--q4Pv6uQ7lO6PJQUA5wLnSRIssz89N363</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Bai, Xingzhen</creator><creator>Qin, Feiyu</creator><creator>Ge, Leijiao</creator><creator>Zeng, Lin</creator><creator>Zheng, Xinlei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6310-6986</orcidid><orcidid>https://orcid.org/0000-0002-1134-594X</orcidid><orcidid>https://orcid.org/0000-0001-6754-8490</orcidid><orcidid>https://orcid.org/0000-0003-3271-6903</orcidid></search><sort><creationdate>20230401</creationdate><title>Dynamic State Estimation for Synchronous Generator with Communication Constraints: An Improved Regularized Particle Filter Approach</title><author>Bai, Xingzhen ; Qin, Feiyu ; Ge, Leijiao ; Zeng, Lin ; Zheng, Xinlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6a607a81afc474f6ee9b98c113e13d1403c3f8fcbf8e4206e5e1e62ce278399c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Communication</topic><topic>Data acquisition</topic><topic>Data transmission</topic><topic>Dynamic state estimation</topic><topic>event-triggering scheme</topic><topic>Generators</topic><topic>Genetic algorithms</topic><topic>Information centers</topic><topic>Mathematical models</topic><topic>Measuring instruments</topic><topic>Parameters</topic><topic>Particle filters</topic><topic>Particle measurements</topic><topic>Phasor measurement units</topic><topic>Phasors</topic><topic>Power system dynamics</topic><topic>regularized particle filter</topic><topic>Resource utilization</topic><topic>State estimation</topic><topic>Synchronous generators</topic><topic>Synchronous machines</topic><topic>wide-area measurement system (WAMS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Xingzhen</creatorcontrib><creatorcontrib>Qin, Feiyu</creatorcontrib><creatorcontrib>Ge, Leijiao</creatorcontrib><creatorcontrib>Zeng, Lin</creatorcontrib><creatorcontrib>Zheng, Xinlei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on sustainable computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Xingzhen</au><au>Qin, Feiyu</au><au>Ge, Leijiao</au><au>Zeng, Lin</au><au>Zheng, Xinlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic State Estimation for Synchronous Generator with Communication Constraints: An Improved Regularized Particle Filter Approach</atitle><jtitle>IEEE transactions on sustainable computing</jtitle><stitle>TSUSC</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>8</volume><issue>2</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2377-3782</issn><eissn>2377-3790</eissn><coden>ITSCBE</coden><abstract>Accurate acquisition of real-time electromechanical dynamic states of synchronous generators plays an essential role in power systems. The phasor measurement units (PMUs) are widely used in data acquisition of synchronous generator operation parameters, which can capture the dynamic responses of generators. However, distortion of measurement results of synchronous generator operation parameters is inevitable due to various reasons, such as device failure and operating environment interference and so on. Meanwhile, it is hard to transmit gigantic volumes of data to the information center due to limited communication bandwidth. To tackle these challenges, this paper proposes a dynamic state estimation method for synchronous generators with event-triggered scheme. The proposed method first establishes a non-linear model to describe the dynamics of generators. Then, a measure-based event-triggering scheme is adopted to schedule the data transmission from the sensor to estimator, thus reducing communication pressure and enhanced resource utilization. Finally, an improved regularized particle filter (IRPF) algorithm is designed to guarantee the estimation performance. To this end, the genetic algorithm is used to optimize the particles sampled by regularized particle filter algorithm, which can solve particle exhaustion problem. The CEPRI7 system is used to verify the performance of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSUSC.2022.3221090</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6310-6986</orcidid><orcidid>https://orcid.org/0000-0002-1134-594X</orcidid><orcidid>https://orcid.org/0000-0001-6754-8490</orcidid><orcidid>https://orcid.org/0000-0003-3271-6903</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2377-3782
ispartof IEEE transactions on sustainable computing, 2023-04, Vol.8 (2), p.1-10
issn 2377-3782
2377-3790
language eng
recordid cdi_proquest_journals_2824113399
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Communication
Data acquisition
Data transmission
Dynamic state estimation
event-triggering scheme
Generators
Genetic algorithms
Information centers
Mathematical models
Measuring instruments
Parameters
Particle filters
Particle measurements
Phasor measurement units
Phasors
Power system dynamics
regularized particle filter
Resource utilization
State estimation
Synchronous generators
Synchronous machines
wide-area measurement system (WAMS)
title Dynamic State Estimation for Synchronous Generator with Communication Constraints: An Improved Regularized Particle Filter Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20State%20Estimation%20for%20Synchronous%20Generator%20with%20Communication%20Constraints:%20An%20Improved%20Regularized%20Particle%20Filter%20Approach&rft.jtitle=IEEE%20transactions%20on%20sustainable%20computing&rft.au=Bai,%20Xingzhen&rft.date=2023-04-01&rft.volume=8&rft.issue=2&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2377-3782&rft.eissn=2377-3790&rft.coden=ITSCBE&rft_id=info:doi/10.1109/TSUSC.2022.3221090&rft_dat=%3Cproquest_cross%3E2824113399%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-6a607a81afc474f6ee9b98c113e13d1403c3f8fcbf8e4206e5e1e62ce278399c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824113399&rft_id=info:pmid/&rft_ieee_id=9944921&rfr_iscdi=true