Loading…
Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin
Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this stud...
Saved in:
Published in: | Advanced functional materials 2023-06, Vol.33 (24), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663 |
---|---|
cites | cdi_FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663 |
container_end_page | n/a |
container_issue | 24 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Wu, Ke Cui, Yanyu Song, Yaping Ma, Zhiyan Wang, Juan Li, Juan Fei, Teng Zhang, Tong |
description | Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this study, inspired by the neuron system, the self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks (MOFs) are prepared. The optimized hydrogel exhibits excellent adhesion (40 kPa), stretchability (0%–100%), water retention (>92% at 0% relative humidity (RH) atmosphere), ionic conductivity (>10−3 S m−1) and stability (>30 days). Besides, the neuron system‐like hydrogels are highly sensitive to pressure (0—10 N) and humidity (0%–75% RH) with dual‐modal output, without external power source. Finally, the optimized hydrogel ionic skin is applied in human motion detection, energy harvesting, and low humidity sensing. This study provides a preliminary exploration of self‐powered ionic skin for multi‐application scenarios.
Self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks are designed and prepared. The obtained hydrogels are highly sensitive to pressure and humidity with dual‐modal output, holding great potential in multifunctional applications. |
doi_str_mv | 10.1002/adfm.202300239 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824587656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824587656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhSMEEs-V2RIrLX40iT1W5VWJUkRBYotc-xpc3LjYiUo2NlZ-I7-EVEVlZLrnSOc7ujpJckxwl2BMz6Q28y7FlLWGia1kj2Qk6zBM-fZGk6fdZD_GGcYkz1lvL_m8hTr48vvja1jGhQ2g0QScaf2dX8LKXjc6-GdwES1t9YIu3hU4B2WF-voFovXlKboH1Sgnp9bZqkGy1Oi8lq7tGHkNaFxXi7pCxgc0ql1lTV2qquWkQ0NfWoUmr7Y8THaMdBGOfu9B8nh58TC47tyMr4aD_k1HMZKLTsqo1lgAiB4TWmCOTcapZhRIxnPZm0oqU8WVYIxjLgThMk25SVUmpibNMnaQnKx7F8G_1RCrYubr0P4SC8ppL-V5lq5S3XVKBR9jAFMsgp3L0BQEF6uxi9XYxWbsFhBrYGkdNP-ki_755eiP_QFM3Ydn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824587656</pqid></control><display><type>article</type><title>Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wu, Ke ; Cui, Yanyu ; Song, Yaping ; Ma, Zhiyan ; Wang, Juan ; Li, Juan ; Fei, Teng ; Zhang, Tong</creator><creatorcontrib>Wu, Ke ; Cui, Yanyu ; Song, Yaping ; Ma, Zhiyan ; Wang, Juan ; Li, Juan ; Fei, Teng ; Zhang, Tong</creatorcontrib><description>Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this study, inspired by the neuron system, the self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks (MOFs) are prepared. The optimized hydrogel exhibits excellent adhesion (40 kPa), stretchability (0%–100%), water retention (>92% at 0% relative humidity (RH) atmosphere), ionic conductivity (>10−3 S m−1) and stability (>30 days). Besides, the neuron system‐like hydrogels are highly sensitive to pressure (0—10 N) and humidity (0%–75% RH) with dual‐modal output, without external power source. Finally, the optimized hydrogel ionic skin is applied in human motion detection, energy harvesting, and low humidity sensing. This study provides a preliminary exploration of self‐powered ionic skin for multi‐application scenarios.
Self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks are designed and prepared. The obtained hydrogels are highly sensitive to pressure and humidity with dual‐modal output, holding great potential in multifunctional applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202300239</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adhesion ; Energy harvesting ; Gelatin ; Human motion ; Hydrogels ; Ion currents ; Ionic liquids ; Materials science ; Metal-organic frameworks ; Motion perception ; nanogenerators ; Power sources ; Recyclability ; Relative humidity ; self‐power ; strain sensors ; Stretchability</subject><ispartof>Advanced functional materials, 2023-06, Vol.33 (24), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663</citedby><cites>FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663</cites><orcidid>0000-0001-7880-3223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Ke</creatorcontrib><creatorcontrib>Cui, Yanyu</creatorcontrib><creatorcontrib>Song, Yaping</creatorcontrib><creatorcontrib>Ma, Zhiyan</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><title>Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin</title><title>Advanced functional materials</title><description>Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this study, inspired by the neuron system, the self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks (MOFs) are prepared. The optimized hydrogel exhibits excellent adhesion (40 kPa), stretchability (0%–100%), water retention (>92% at 0% relative humidity (RH) atmosphere), ionic conductivity (>10−3 S m−1) and stability (>30 days). Besides, the neuron system‐like hydrogels are highly sensitive to pressure (0—10 N) and humidity (0%–75% RH) with dual‐modal output, without external power source. Finally, the optimized hydrogel ionic skin is applied in human motion detection, energy harvesting, and low humidity sensing. This study provides a preliminary exploration of self‐powered ionic skin for multi‐application scenarios.
Self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks are designed and prepared. The obtained hydrogels are highly sensitive to pressure and humidity with dual‐modal output, holding great potential in multifunctional applications.</description><subject>Adhesion</subject><subject>Energy harvesting</subject><subject>Gelatin</subject><subject>Human motion</subject><subject>Hydrogels</subject><subject>Ion currents</subject><subject>Ionic liquids</subject><subject>Materials science</subject><subject>Metal-organic frameworks</subject><subject>Motion perception</subject><subject>nanogenerators</subject><subject>Power sources</subject><subject>Recyclability</subject><subject>Relative humidity</subject><subject>self‐power</subject><subject>strain sensors</subject><subject>Stretchability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhSMEEs-V2RIrLX40iT1W5VWJUkRBYotc-xpc3LjYiUo2NlZ-I7-EVEVlZLrnSOc7ujpJckxwl2BMz6Q28y7FlLWGia1kj2Qk6zBM-fZGk6fdZD_GGcYkz1lvL_m8hTr48vvja1jGhQ2g0QScaf2dX8LKXjc6-GdwES1t9YIu3hU4B2WF-voFovXlKboH1Sgnp9bZqkGy1Oi8lq7tGHkNaFxXi7pCxgc0ql1lTV2qquWkQ0NfWoUmr7Y8THaMdBGOfu9B8nh58TC47tyMr4aD_k1HMZKLTsqo1lgAiB4TWmCOTcapZhRIxnPZm0oqU8WVYIxjLgThMk25SVUmpibNMnaQnKx7F8G_1RCrYubr0P4SC8ppL-V5lq5S3XVKBR9jAFMsgp3L0BQEF6uxi9XYxWbsFhBrYGkdNP-ki_755eiP_QFM3Ydn</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wu, Ke</creator><creator>Cui, Yanyu</creator><creator>Song, Yaping</creator><creator>Ma, Zhiyan</creator><creator>Wang, Juan</creator><creator>Li, Juan</creator><creator>Fei, Teng</creator><creator>Zhang, Tong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7880-3223</orcidid></search><sort><creationdate>20230601</creationdate><title>Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin</title><author>Wu, Ke ; Cui, Yanyu ; Song, Yaping ; Ma, Zhiyan ; Wang, Juan ; Li, Juan ; Fei, Teng ; Zhang, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adhesion</topic><topic>Energy harvesting</topic><topic>Gelatin</topic><topic>Human motion</topic><topic>Hydrogels</topic><topic>Ion currents</topic><topic>Ionic liquids</topic><topic>Materials science</topic><topic>Metal-organic frameworks</topic><topic>Motion perception</topic><topic>nanogenerators</topic><topic>Power sources</topic><topic>Recyclability</topic><topic>Relative humidity</topic><topic>self‐power</topic><topic>strain sensors</topic><topic>Stretchability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ke</creatorcontrib><creatorcontrib>Cui, Yanyu</creatorcontrib><creatorcontrib>Song, Yaping</creatorcontrib><creatorcontrib>Ma, Zhiyan</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ke</au><au>Cui, Yanyu</au><au>Song, Yaping</au><au>Ma, Zhiyan</au><au>Wang, Juan</au><au>Li, Juan</au><au>Fei, Teng</au><au>Zhang, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin</atitle><jtitle>Advanced functional materials</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>33</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this study, inspired by the neuron system, the self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks (MOFs) are prepared. The optimized hydrogel exhibits excellent adhesion (40 kPa), stretchability (0%–100%), water retention (>92% at 0% relative humidity (RH) atmosphere), ionic conductivity (>10−3 S m−1) and stability (>30 days). Besides, the neuron system‐like hydrogels are highly sensitive to pressure (0—10 N) and humidity (0%–75% RH) with dual‐modal output, without external power source. Finally, the optimized hydrogel ionic skin is applied in human motion detection, energy harvesting, and low humidity sensing. This study provides a preliminary exploration of self‐powered ionic skin for multi‐application scenarios.
Self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks are designed and prepared. The obtained hydrogels are highly sensitive to pressure and humidity with dual‐modal output, holding great potential in multifunctional applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202300239</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7880-3223</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-06, Vol.33 (24), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2824587656 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adhesion Energy harvesting Gelatin Human motion Hydrogels Ion currents Ionic liquids Materials science Metal-organic frameworks Motion perception nanogenerators Power sources Recyclability Relative humidity self‐power strain sensors Stretchability |
title | Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuron%E2%80%90Inspired%20Self%E2%80%90Powered%20Hydrogels%20with%20Excellent%20Adhesion,%20Recyclability%20and%20Dual%E2%80%90Mode%20Output%20for%20Multifunctional%20Ionic%20Skin&rft.jtitle=Advanced%20functional%20materials&rft.au=Wu,%20Ke&rft.date=2023-06-01&rft.volume=33&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202300239&rft_dat=%3Cproquest_cross%3E2824587656%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824587656&rft_id=info:pmid/&rfr_iscdi=true |