Loading…

Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin

Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this stud...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2023-06, Vol.33 (24), p.n/a
Main Authors: Wu, Ke, Cui, Yanyu, Song, Yaping, Ma, Zhiyan, Wang, Juan, Li, Juan, Fei, Teng, Zhang, Tong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663
cites cdi_FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced functional materials
container_volume 33
creator Wu, Ke
Cui, Yanyu
Song, Yaping
Ma, Zhiyan
Wang, Juan
Li, Juan
Fei, Teng
Zhang, Tong
description Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this study, inspired by the neuron system, the self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks (MOFs) are prepared. The optimized hydrogel exhibits excellent adhesion (40 kPa), stretchability (0%–100%), water retention (>92% at 0% relative humidity (RH) atmosphere), ionic conductivity (>10−3 S m−1) and stability (>30 days). Besides, the neuron system‐like hydrogels are highly sensitive to pressure (0—10 N) and humidity (0%–75% RH) with dual‐modal output, without external power source. Finally, the optimized hydrogel ionic skin is applied in human motion detection, energy harvesting, and low humidity sensing. This study provides a preliminary exploration of self‐powered ionic skin for multi‐application scenarios. Self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks are designed and prepared. The obtained hydrogels are highly sensitive to pressure and humidity with dual‐modal output, holding great potential in multifunctional applications.
doi_str_mv 10.1002/adfm.202300239
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824587656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824587656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhSMEEs-V2RIrLX40iT1W5VWJUkRBYotc-xpc3LjYiUo2NlZ-I7-EVEVlZLrnSOc7ujpJckxwl2BMz6Q28y7FlLWGia1kj2Qk6zBM-fZGk6fdZD_GGcYkz1lvL_m8hTr48vvja1jGhQ2g0QScaf2dX8LKXjc6-GdwES1t9YIu3hU4B2WF-voFovXlKboH1Sgnp9bZqkGy1Oi8lq7tGHkNaFxXi7pCxgc0ql1lTV2qquWkQ0NfWoUmr7Y8THaMdBGOfu9B8nh58TC47tyMr4aD_k1HMZKLTsqo1lgAiB4TWmCOTcapZhRIxnPZm0oqU8WVYIxjLgThMk25SVUmpibNMnaQnKx7F8G_1RCrYubr0P4SC8ppL-V5lq5S3XVKBR9jAFMsgp3L0BQEF6uxi9XYxWbsFhBrYGkdNP-ki_755eiP_QFM3Ydn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824587656</pqid></control><display><type>article</type><title>Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wu, Ke ; Cui, Yanyu ; Song, Yaping ; Ma, Zhiyan ; Wang, Juan ; Li, Juan ; Fei, Teng ; Zhang, Tong</creator><creatorcontrib>Wu, Ke ; Cui, Yanyu ; Song, Yaping ; Ma, Zhiyan ; Wang, Juan ; Li, Juan ; Fei, Teng ; Zhang, Tong</creatorcontrib><description>Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this study, inspired by the neuron system, the self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks (MOFs) are prepared. The optimized hydrogel exhibits excellent adhesion (40 kPa), stretchability (0%–100%), water retention (&gt;92% at 0% relative humidity (RH) atmosphere), ionic conductivity (&gt;10−3 S m−1) and stability (&gt;30 days). Besides, the neuron system‐like hydrogels are highly sensitive to pressure (0—10 N) and humidity (0%–75% RH) with dual‐modal output, without external power source. Finally, the optimized hydrogel ionic skin is applied in human motion detection, energy harvesting, and low humidity sensing. This study provides a preliminary exploration of self‐powered ionic skin for multi‐application scenarios. Self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks are designed and prepared. The obtained hydrogels are highly sensitive to pressure and humidity with dual‐modal output, holding great potential in multifunctional applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202300239</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adhesion ; Energy harvesting ; Gelatin ; Human motion ; Hydrogels ; Ion currents ; Ionic liquids ; Materials science ; Metal-organic frameworks ; Motion perception ; nanogenerators ; Power sources ; Recyclability ; Relative humidity ; self‐power ; strain sensors ; Stretchability</subject><ispartof>Advanced functional materials, 2023-06, Vol.33 (24), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663</citedby><cites>FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663</cites><orcidid>0000-0001-7880-3223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Ke</creatorcontrib><creatorcontrib>Cui, Yanyu</creatorcontrib><creatorcontrib>Song, Yaping</creatorcontrib><creatorcontrib>Ma, Zhiyan</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><title>Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin</title><title>Advanced functional materials</title><description>Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this study, inspired by the neuron system, the self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks (MOFs) are prepared. The optimized hydrogel exhibits excellent adhesion (40 kPa), stretchability (0%–100%), water retention (&gt;92% at 0% relative humidity (RH) atmosphere), ionic conductivity (&gt;10−3 S m−1) and stability (&gt;30 days). Besides, the neuron system‐like hydrogels are highly sensitive to pressure (0—10 N) and humidity (0%–75% RH) with dual‐modal output, without external power source. Finally, the optimized hydrogel ionic skin is applied in human motion detection, energy harvesting, and low humidity sensing. This study provides a preliminary exploration of self‐powered ionic skin for multi‐application scenarios. Self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks are designed and prepared. The obtained hydrogels are highly sensitive to pressure and humidity with dual‐modal output, holding great potential in multifunctional applications.</description><subject>Adhesion</subject><subject>Energy harvesting</subject><subject>Gelatin</subject><subject>Human motion</subject><subject>Hydrogels</subject><subject>Ion currents</subject><subject>Ionic liquids</subject><subject>Materials science</subject><subject>Metal-organic frameworks</subject><subject>Motion perception</subject><subject>nanogenerators</subject><subject>Power sources</subject><subject>Recyclability</subject><subject>Relative humidity</subject><subject>self‐power</subject><subject>strain sensors</subject><subject>Stretchability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhSMEEs-V2RIrLX40iT1W5VWJUkRBYotc-xpc3LjYiUo2NlZ-I7-EVEVlZLrnSOc7ujpJckxwl2BMz6Q28y7FlLWGia1kj2Qk6zBM-fZGk6fdZD_GGcYkz1lvL_m8hTr48vvja1jGhQ2g0QScaf2dX8LKXjc6-GdwES1t9YIu3hU4B2WF-voFovXlKboH1Sgnp9bZqkGy1Oi8lq7tGHkNaFxXi7pCxgc0ql1lTV2qquWkQ0NfWoUmr7Y8THaMdBGOfu9B8nh58TC47tyMr4aD_k1HMZKLTsqo1lgAiB4TWmCOTcapZhRIxnPZm0oqU8WVYIxjLgThMk25SVUmpibNMnaQnKx7F8G_1RCrYubr0P4SC8ppL-V5lq5S3XVKBR9jAFMsgp3L0BQEF6uxi9XYxWbsFhBrYGkdNP-ki_755eiP_QFM3Ydn</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wu, Ke</creator><creator>Cui, Yanyu</creator><creator>Song, Yaping</creator><creator>Ma, Zhiyan</creator><creator>Wang, Juan</creator><creator>Li, Juan</creator><creator>Fei, Teng</creator><creator>Zhang, Tong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7880-3223</orcidid></search><sort><creationdate>20230601</creationdate><title>Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin</title><author>Wu, Ke ; Cui, Yanyu ; Song, Yaping ; Ma, Zhiyan ; Wang, Juan ; Li, Juan ; Fei, Teng ; Zhang, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adhesion</topic><topic>Energy harvesting</topic><topic>Gelatin</topic><topic>Human motion</topic><topic>Hydrogels</topic><topic>Ion currents</topic><topic>Ionic liquids</topic><topic>Materials science</topic><topic>Metal-organic frameworks</topic><topic>Motion perception</topic><topic>nanogenerators</topic><topic>Power sources</topic><topic>Recyclability</topic><topic>Relative humidity</topic><topic>self‐power</topic><topic>strain sensors</topic><topic>Stretchability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ke</creatorcontrib><creatorcontrib>Cui, Yanyu</creatorcontrib><creatorcontrib>Song, Yaping</creatorcontrib><creatorcontrib>Ma, Zhiyan</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Fei, Teng</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ke</au><au>Cui, Yanyu</au><au>Song, Yaping</au><au>Ma, Zhiyan</au><au>Wang, Juan</au><au>Li, Juan</au><au>Fei, Teng</au><au>Zhang, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin</atitle><jtitle>Advanced functional materials</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>33</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Hydrogels are promising materials for electronic skin due to their flexibility and modifiability. Reported hydrogel electronic skins can recognize stimulations and output signals, but the single output signal and the requirement of external power source limit their further applications. In this study, inspired by the neuron system, the self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks (MOFs) are prepared. The optimized hydrogel exhibits excellent adhesion (40 kPa), stretchability (0%–100%), water retention (&gt;92% at 0% relative humidity (RH) atmosphere), ionic conductivity (&gt;10−3 S m−1) and stability (&gt;30 days). Besides, the neuron system‐like hydrogels are highly sensitive to pressure (0—10 N) and humidity (0%–75% RH) with dual‐modal output, without external power source. Finally, the optimized hydrogel ionic skin is applied in human motion detection, energy harvesting, and low humidity sensing. This study provides a preliminary exploration of self‐powered ionic skin for multi‐application scenarios. Self‐powered neuron system‐like hydrogels based on gelatin, water/glycerin and ionic liquid modified metal organic frameworks are designed and prepared. The obtained hydrogels are highly sensitive to pressure and humidity with dual‐modal output, holding great potential in multifunctional applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202300239</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7880-3223</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-06, Vol.33 (24), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2824587656
source Wiley-Blackwell Read & Publish Collection
subjects Adhesion
Energy harvesting
Gelatin
Human motion
Hydrogels
Ion currents
Ionic liquids
Materials science
Metal-organic frameworks
Motion perception
nanogenerators
Power sources
Recyclability
Relative humidity
self‐power
strain sensors
Stretchability
title Neuron‐Inspired Self‐Powered Hydrogels with Excellent Adhesion, Recyclability and Dual‐Mode Output for Multifunctional Ionic Skin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuron%E2%80%90Inspired%20Self%E2%80%90Powered%20Hydrogels%20with%20Excellent%20Adhesion,%20Recyclability%20and%20Dual%E2%80%90Mode%20Output%20for%20Multifunctional%20Ionic%20Skin&rft.jtitle=Advanced%20functional%20materials&rft.au=Wu,%20Ke&rft.date=2023-06-01&rft.volume=33&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202300239&rft_dat=%3Cproquest_cross%3E2824587656%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3179-532dd09ee9439d9080f682d32e1687a4ba2a5c8c9338089918a558f5c69bf5663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824587656&rft_id=info:pmid/&rfr_iscdi=true