Loading…
Automating Model Comparison in Factor Graphs
Bayesian state and parameter estimation have been automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This pap...
Saved in:
Published in: | arXiv.org 2023-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bart van Erp Nuijten, Wouter W L Thijs van de Laar de Vries, Bert |
description | Bayesian state and parameter estimation have been automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This paper efficiently automates Bayesian model averaging, selection, and combination by message passing on a Forney-style factor graph with a custom mixture node. Parameter and state inference, and model comparison can then be executed simultaneously using message passing with scale factors. This approach shortens the model design cycle and allows for the straightforward extension to hierarchical and temporal model priors to accommodate for modeling complicated time-varying processes. |
doi_str_mv | 10.48550/arxiv.2306.05965 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2825005272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825005272</sourcerecordid><originalsourceid>FETCH-LOGICAL-a955-db6ec1e07d645403bfeb61c603d74f6bb62a78b23516d50a1caf117beca749933</originalsourceid><addsrcrecordid>eNotzUFLwzAUwPEgCBtzH8BbwautLy95SXscxU1h4mX38dKms2NratKKH19BT__b7y_EvYRCl0TwxPG7_ypQgSmAKkM3YolKybzUiAuxTukMAGgsEqmleNzMU7jy1A-n7C20_pLV4Tpy7FMYsn7IttxMIWa7yONHuhO3HV-SX_93JQ7b50P9ku_fd6_1Zp9zRZS3zvhGerCt0aRBuc47IxsDqrW6M84ZZFs6VCRNS8Cy4U5K63zDVleVUivx8MeOMXzOPk3Hc5jj8Hs8YokEQGhR_QDBjUM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825005272</pqid></control><display><type>article</type><title>Automating Model Comparison in Factor Graphs</title><source>Publicly Available Content Database</source><creator>Bart van Erp ; Nuijten, Wouter W L ; Thijs van de Laar ; de Vries, Bert</creator><creatorcontrib>Bart van Erp ; Nuijten, Wouter W L ; Thijs van de Laar ; de Vries, Bert</creatorcontrib><description>Bayesian state and parameter estimation have been automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This paper efficiently automates Bayesian model averaging, selection, and combination by message passing on a Forney-style factor graph with a custom mixture node. Parameter and state inference, and model comparison can then be executed simultaneously using message passing with scale factors. This approach shortens the model design cycle and allows for the straightforward extension to hierarchical and temporal model priors to accommodate for modeling complicated time-varying processes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2306.05965</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Mathematical models ; Message passing ; Parameter estimation</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2825005272?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Bart van Erp</creatorcontrib><creatorcontrib>Nuijten, Wouter W L</creatorcontrib><creatorcontrib>Thijs van de Laar</creatorcontrib><creatorcontrib>de Vries, Bert</creatorcontrib><title>Automating Model Comparison in Factor Graphs</title><title>arXiv.org</title><description>Bayesian state and parameter estimation have been automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This paper efficiently automates Bayesian model averaging, selection, and combination by message passing on a Forney-style factor graph with a custom mixture node. Parameter and state inference, and model comparison can then be executed simultaneously using message passing with scale factors. This approach shortens the model design cycle and allows for the straightforward extension to hierarchical and temporal model priors to accommodate for modeling complicated time-varying processes.</description><subject>Bayesian analysis</subject><subject>Mathematical models</subject><subject>Message passing</subject><subject>Parameter estimation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzUFLwzAUwPEgCBtzH8BbwautLy95SXscxU1h4mX38dKms2NratKKH19BT__b7y_EvYRCl0TwxPG7_ypQgSmAKkM3YolKybzUiAuxTukMAGgsEqmleNzMU7jy1A-n7C20_pLV4Tpy7FMYsn7IttxMIWa7yONHuhO3HV-SX_93JQ7b50P9ku_fd6_1Zp9zRZS3zvhGerCt0aRBuc47IxsDqrW6M84ZZFs6VCRNS8Cy4U5K63zDVleVUivx8MeOMXzOPk3Hc5jj8Hs8YokEQGhR_QDBjUM0</recordid><startdate>20230728</startdate><enddate>20230728</enddate><creator>Bart van Erp</creator><creator>Nuijten, Wouter W L</creator><creator>Thijs van de Laar</creator><creator>de Vries, Bert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230728</creationdate><title>Automating Model Comparison in Factor Graphs</title><author>Bart van Erp ; Nuijten, Wouter W L ; Thijs van de Laar ; de Vries, Bert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a955-db6ec1e07d645403bfeb61c603d74f6bb62a78b23516d50a1caf117beca749933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Mathematical models</topic><topic>Message passing</topic><topic>Parameter estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Bart van Erp</creatorcontrib><creatorcontrib>Nuijten, Wouter W L</creatorcontrib><creatorcontrib>Thijs van de Laar</creatorcontrib><creatorcontrib>de Vries, Bert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bart van Erp</au><au>Nuijten, Wouter W L</au><au>Thijs van de Laar</au><au>de Vries, Bert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automating Model Comparison in Factor Graphs</atitle><jtitle>arXiv.org</jtitle><date>2023-07-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Bayesian state and parameter estimation have been automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This paper efficiently automates Bayesian model averaging, selection, and combination by message passing on a Forney-style factor graph with a custom mixture node. Parameter and state inference, and model comparison can then be executed simultaneously using message passing with scale factors. This approach shortens the model design cycle and allows for the straightforward extension to hierarchical and temporal model priors to accommodate for modeling complicated time-varying processes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2306.05965</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2825005272 |
source | Publicly Available Content Database |
subjects | Bayesian analysis Mathematical models Message passing Parameter estimation |
title | Automating Model Comparison in Factor Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automating%20Model%20Comparison%20in%20Factor%20Graphs&rft.jtitle=arXiv.org&rft.au=Bart%20van%20Erp&rft.date=2023-07-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2306.05965&rft_dat=%3Cproquest%3E2825005272%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a955-db6ec1e07d645403bfeb61c603d74f6bb62a78b23516d50a1caf117beca749933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825005272&rft_id=info:pmid/&rfr_iscdi=true |