Loading…

Automating Model Comparison in Factor Graphs

Bayesian state and parameter estimation have been automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This pap...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-07
Main Authors: Bart van Erp, Nuijten, Wouter W L, Thijs van de Laar, de Vries, Bert
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bart van Erp
Nuijten, Wouter W L
Thijs van de Laar
de Vries, Bert
description Bayesian state and parameter estimation have been automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This paper efficiently automates Bayesian model averaging, selection, and combination by message passing on a Forney-style factor graph with a custom mixture node. Parameter and state inference, and model comparison can then be executed simultaneously using message passing with scale factors. This approach shortens the model design cycle and allows for the straightforward extension to hierarchical and temporal model priors to accommodate for modeling complicated time-varying processes.
doi_str_mv 10.48550/arxiv.2306.05965
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2825005272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825005272</sourcerecordid><originalsourceid>FETCH-LOGICAL-a955-db6ec1e07d645403bfeb61c603d74f6bb62a78b23516d50a1caf117beca749933</originalsourceid><addsrcrecordid>eNotzUFLwzAUwPEgCBtzH8BbwautLy95SXscxU1h4mX38dKms2NratKKH19BT__b7y_EvYRCl0TwxPG7_ypQgSmAKkM3YolKybzUiAuxTukMAGgsEqmleNzMU7jy1A-n7C20_pLV4Tpy7FMYsn7IttxMIWa7yONHuhO3HV-SX_93JQ7b50P9ku_fd6_1Zp9zRZS3zvhGerCt0aRBuc47IxsDqrW6M84ZZFs6VCRNS8Cy4U5K63zDVleVUivx8MeOMXzOPk3Hc5jj8Hs8YokEQGhR_QDBjUM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825005272</pqid></control><display><type>article</type><title>Automating Model Comparison in Factor Graphs</title><source>Publicly Available Content Database</source><creator>Bart van Erp ; Nuijten, Wouter W L ; Thijs van de Laar ; de Vries, Bert</creator><creatorcontrib>Bart van Erp ; Nuijten, Wouter W L ; Thijs van de Laar ; de Vries, Bert</creatorcontrib><description>Bayesian state and parameter estimation have been automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This paper efficiently automates Bayesian model averaging, selection, and combination by message passing on a Forney-style factor graph with a custom mixture node. Parameter and state inference, and model comparison can then be executed simultaneously using message passing with scale factors. This approach shortens the model design cycle and allows for the straightforward extension to hierarchical and temporal model priors to accommodate for modeling complicated time-varying processes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2306.05965</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Mathematical models ; Message passing ; Parameter estimation</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2825005272?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Bart van Erp</creatorcontrib><creatorcontrib>Nuijten, Wouter W L</creatorcontrib><creatorcontrib>Thijs van de Laar</creatorcontrib><creatorcontrib>de Vries, Bert</creatorcontrib><title>Automating Model Comparison in Factor Graphs</title><title>arXiv.org</title><description>Bayesian state and parameter estimation have been automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This paper efficiently automates Bayesian model averaging, selection, and combination by message passing on a Forney-style factor graph with a custom mixture node. Parameter and state inference, and model comparison can then be executed simultaneously using message passing with scale factors. This approach shortens the model design cycle and allows for the straightforward extension to hierarchical and temporal model priors to accommodate for modeling complicated time-varying processes.</description><subject>Bayesian analysis</subject><subject>Mathematical models</subject><subject>Message passing</subject><subject>Parameter estimation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzUFLwzAUwPEgCBtzH8BbwautLy95SXscxU1h4mX38dKms2NratKKH19BT__b7y_EvYRCl0TwxPG7_ypQgSmAKkM3YolKybzUiAuxTukMAGgsEqmleNzMU7jy1A-n7C20_pLV4Tpy7FMYsn7IttxMIWa7yONHuhO3HV-SX_93JQ7b50P9ku_fd6_1Zp9zRZS3zvhGerCt0aRBuc47IxsDqrW6M84ZZFs6VCRNS8Cy4U5K63zDVleVUivx8MeOMXzOPk3Hc5jj8Hs8YokEQGhR_QDBjUM0</recordid><startdate>20230728</startdate><enddate>20230728</enddate><creator>Bart van Erp</creator><creator>Nuijten, Wouter W L</creator><creator>Thijs van de Laar</creator><creator>de Vries, Bert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230728</creationdate><title>Automating Model Comparison in Factor Graphs</title><author>Bart van Erp ; Nuijten, Wouter W L ; Thijs van de Laar ; de Vries, Bert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a955-db6ec1e07d645403bfeb61c603d74f6bb62a78b23516d50a1caf117beca749933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Mathematical models</topic><topic>Message passing</topic><topic>Parameter estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Bart van Erp</creatorcontrib><creatorcontrib>Nuijten, Wouter W L</creatorcontrib><creatorcontrib>Thijs van de Laar</creatorcontrib><creatorcontrib>de Vries, Bert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bart van Erp</au><au>Nuijten, Wouter W L</au><au>Thijs van de Laar</au><au>de Vries, Bert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automating Model Comparison in Factor Graphs</atitle><jtitle>arXiv.org</jtitle><date>2023-07-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Bayesian state and parameter estimation have been automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This paper efficiently automates Bayesian model averaging, selection, and combination by message passing on a Forney-style factor graph with a custom mixture node. Parameter and state inference, and model comparison can then be executed simultaneously using message passing with scale factors. This approach shortens the model design cycle and allows for the straightforward extension to hierarchical and temporal model priors to accommodate for modeling complicated time-varying processes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2306.05965</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2825005272
source Publicly Available Content Database
subjects Bayesian analysis
Mathematical models
Message passing
Parameter estimation
title Automating Model Comparison in Factor Graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automating%20Model%20Comparison%20in%20Factor%20Graphs&rft.jtitle=arXiv.org&rft.au=Bart%20van%20Erp&rft.date=2023-07-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2306.05965&rft_dat=%3Cproquest%3E2825005272%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a955-db6ec1e07d645403bfeb61c603d74f6bb62a78b23516d50a1caf117beca749933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825005272&rft_id=info:pmid/&rfr_iscdi=true