Loading…

Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells

Perovskite oxide shows great promise as an alternative fuel electrode material in solid oxide electrolysis cells (SOEC) for the specific CO2 electrochemical reduction, because of its excellent coking resistance. However, use of perovskite oxide is limited by its poor catalytic activity in CO2 reduct...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry frontiers 2023-06, Vol.10 (12), p.3536-3543
Main Authors: Lee, Sang Won, Nam, Tae Heon, Kim, Minkyu, Lee, Seokhee, Kyu Hyung Lee, Park, Jong Hyeok, Tae Ho Shin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3543
container_issue 12
container_start_page 3536
container_title Inorganic chemistry frontiers
container_volume 10
creator Lee, Sang Won
Nam, Tae Heon
Kim, Minkyu
Lee, Seokhee
Kyu Hyung Lee
Park, Jong Hyeok
Tae Ho Shin
description Perovskite oxide shows great promise as an alternative fuel electrode material in solid oxide electrolysis cells (SOEC) for the specific CO2 electrochemical reduction, because of its excellent coking resistance. However, use of perovskite oxide is limited by its poor catalytic activity in CO2 reduction. In this study, we investigated the use of various metal additives (Co, Fe, Ni, and Ru) on a La(Sr)Fe(Mn)O3 (LSFM) fuel electrode for CO2 reduction in a commercial infiltration process. Based on the electrochemical impedance spectroscopy (EIS) results, we determined the catalytic activity and reaction kinetics of CO2 reduction for metal catalysts. In addition, the distribution of relaxation times analysis was conducted to investigate the adsorption and dissociation processes of CO2 molecules for each catalyst. Consequently, when the Fe catalyst was applied in a LSFM fuel electrode for La0.8Sr0.2Ga0.8Mn0.2O3 (LSGM) electrolyte-supported cells, an electrolysis performance of 2.201 A cm−2 at 1.5 V in CO2 electrolysis was obtained at 1123 K.
doi_str_mv 10.1039/d3qi00379e
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2825094229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825094229</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-50e261ff9e30d2420f3bcc0eb5d2db08ca2b3d7ff0011b51f4f72f2d5f0fa0c3</originalsourceid><addsrcrecordid>eNpVUMtKw0AUDaJgqd34BRfctNDonZnENEsJVoVqQbsvk5k7ZiTNtJlp1Z3_4C_4ZX6JEUVwdc8DzjncKDpmeMpQ5GdabCyiyHLai3ocUx6zNBX7fzhJD6OB97bETsCcYdaLPi6bSjbKNo9QzDlQTSq0rn711sOaWuPaVWcTPNtQwU621m09rCjIGqTWNtgdeRgWbgxTGsOdHYNsNNxvR_D59g6alGtl-E4PFcFMDh_a0ZSGt81oLkDJUDlNYBvwrrYa3Ivt6L8NiuraH0UHRtaeBr-3Hy2ml4viOp7Nr26Ki1m85iwPcYrEz5kxOQnUPOFoRKkUUplqrkucKMlLoTNjEBkrU2YSk3HDdWrQSFSiH538xK5bt9mSD8snt22brnHJJ7z7WMJ5Lr4AF6Fu9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825094229</pqid></control><display><type>article</type><title>Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Lee, Sang Won ; Nam, Tae Heon ; Kim, Minkyu ; Lee, Seokhee ; Kyu Hyung Lee ; Park, Jong Hyeok ; Tae Ho Shin</creator><creatorcontrib>Lee, Sang Won ; Nam, Tae Heon ; Kim, Minkyu ; Lee, Seokhee ; Kyu Hyung Lee ; Park, Jong Hyeok ; Tae Ho Shin</creatorcontrib><description>Perovskite oxide shows great promise as an alternative fuel electrode material in solid oxide electrolysis cells (SOEC) for the specific CO2 electrochemical reduction, because of its excellent coking resistance. However, use of perovskite oxide is limited by its poor catalytic activity in CO2 reduction. In this study, we investigated the use of various metal additives (Co, Fe, Ni, and Ru) on a La(Sr)Fe(Mn)O3 (LSFM) fuel electrode for CO2 reduction in a commercial infiltration process. Based on the electrochemical impedance spectroscopy (EIS) results, we determined the catalytic activity and reaction kinetics of CO2 reduction for metal catalysts. In addition, the distribution of relaxation times analysis was conducted to investigate the adsorption and dissociation processes of CO2 molecules for each catalyst. Consequently, when the Fe catalyst was applied in a LSFM fuel electrode for La0.8Sr0.2Ga0.8Mn0.2O3 (LSGM) electrolyte-supported cells, an electrolysis performance of 2.201 A cm−2 at 1.5 V in CO2 electrolysis was obtained at 1123 K.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d3qi00379e</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Additives ; Alternative fuels ; Carbon dioxide ; Catalysts ; Catalytic activity ; Chemical reduction ; Cobalt ; Coking ; Electrochemical impedance spectroscopy ; Electrode materials ; Electrodes ; Electrolysis ; Electrolytic cells ; Inorganic chemistry ; Iron ; Manganese ; Nickel ; Perovskites ; Reaction kinetics ; Strontium</subject><ispartof>Inorganic chemistry frontiers, 2023-06, Vol.10 (12), p.3536-3543</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Sang Won</creatorcontrib><creatorcontrib>Nam, Tae Heon</creatorcontrib><creatorcontrib>Kim, Minkyu</creatorcontrib><creatorcontrib>Lee, Seokhee</creatorcontrib><creatorcontrib>Kyu Hyung Lee</creatorcontrib><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Tae Ho Shin</creatorcontrib><title>Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells</title><title>Inorganic chemistry frontiers</title><description>Perovskite oxide shows great promise as an alternative fuel electrode material in solid oxide electrolysis cells (SOEC) for the specific CO2 electrochemical reduction, because of its excellent coking resistance. However, use of perovskite oxide is limited by its poor catalytic activity in CO2 reduction. In this study, we investigated the use of various metal additives (Co, Fe, Ni, and Ru) on a La(Sr)Fe(Mn)O3 (LSFM) fuel electrode for CO2 reduction in a commercial infiltration process. Based on the electrochemical impedance spectroscopy (EIS) results, we determined the catalytic activity and reaction kinetics of CO2 reduction for metal catalysts. In addition, the distribution of relaxation times analysis was conducted to investigate the adsorption and dissociation processes of CO2 molecules for each catalyst. Consequently, when the Fe catalyst was applied in a LSFM fuel electrode for La0.8Sr0.2Ga0.8Mn0.2O3 (LSGM) electrolyte-supported cells, an electrolysis performance of 2.201 A cm−2 at 1.5 V in CO2 electrolysis was obtained at 1123 K.</description><subject>Additives</subject><subject>Alternative fuels</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Cobalt</subject><subject>Coking</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Inorganic chemistry</subject><subject>Iron</subject><subject>Manganese</subject><subject>Nickel</subject><subject>Perovskites</subject><subject>Reaction kinetics</subject><subject>Strontium</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUMtKw0AUDaJgqd34BRfctNDonZnENEsJVoVqQbsvk5k7ZiTNtJlp1Z3_4C_4ZX6JEUVwdc8DzjncKDpmeMpQ5GdabCyiyHLai3ocUx6zNBX7fzhJD6OB97bETsCcYdaLPi6bSjbKNo9QzDlQTSq0rn711sOaWuPaVWcTPNtQwU621m09rCjIGqTWNtgdeRgWbgxTGsOdHYNsNNxvR_D59g6alGtl-E4PFcFMDh_a0ZSGt81oLkDJUDlNYBvwrrYa3Ivt6L8NiuraH0UHRtaeBr-3Hy2ml4viOp7Nr26Ki1m85iwPcYrEz5kxOQnUPOFoRKkUUplqrkucKMlLoTNjEBkrU2YSk3HDdWrQSFSiH538xK5bt9mSD8snt22brnHJJ7z7WMJ5Lr4AF6Fu9A</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Lee, Sang Won</creator><creator>Nam, Tae Heon</creator><creator>Kim, Minkyu</creator><creator>Lee, Seokhee</creator><creator>Kyu Hyung Lee</creator><creator>Park, Jong Hyeok</creator><creator>Tae Ho Shin</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20230613</creationdate><title>Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells</title><author>Lee, Sang Won ; Nam, Tae Heon ; Kim, Minkyu ; Lee, Seokhee ; Kyu Hyung Lee ; Park, Jong Hyeok ; Tae Ho Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-50e261ff9e30d2420f3bcc0eb5d2db08ca2b3d7ff0011b51f4f72f2d5f0fa0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Alternative fuels</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Cobalt</topic><topic>Coking</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Inorganic chemistry</topic><topic>Iron</topic><topic>Manganese</topic><topic>Nickel</topic><topic>Perovskites</topic><topic>Reaction kinetics</topic><topic>Strontium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang Won</creatorcontrib><creatorcontrib>Nam, Tae Heon</creatorcontrib><creatorcontrib>Kim, Minkyu</creatorcontrib><creatorcontrib>Lee, Seokhee</creatorcontrib><creatorcontrib>Kyu Hyung Lee</creatorcontrib><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Tae Ho Shin</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang Won</au><au>Nam, Tae Heon</au><au>Kim, Minkyu</au><au>Lee, Seokhee</au><au>Kyu Hyung Lee</au><au>Park, Jong Hyeok</au><au>Tae Ho Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2023-06-13</date><risdate>2023</risdate><volume>10</volume><issue>12</issue><spage>3536</spage><epage>3543</epage><pages>3536-3543</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Perovskite oxide shows great promise as an alternative fuel electrode material in solid oxide electrolysis cells (SOEC) for the specific CO2 electrochemical reduction, because of its excellent coking resistance. However, use of perovskite oxide is limited by its poor catalytic activity in CO2 reduction. In this study, we investigated the use of various metal additives (Co, Fe, Ni, and Ru) on a La(Sr)Fe(Mn)O3 (LSFM) fuel electrode for CO2 reduction in a commercial infiltration process. Based on the electrochemical impedance spectroscopy (EIS) results, we determined the catalytic activity and reaction kinetics of CO2 reduction for metal catalysts. In addition, the distribution of relaxation times analysis was conducted to investigate the adsorption and dissociation processes of CO2 molecules for each catalyst. Consequently, when the Fe catalyst was applied in a LSFM fuel electrode for La0.8Sr0.2Ga0.8Mn0.2O3 (LSGM) electrolyte-supported cells, an electrolysis performance of 2.201 A cm−2 at 1.5 V in CO2 electrolysis was obtained at 1123 K.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3qi00379e</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-1545
ispartof Inorganic chemistry frontiers, 2023-06, Vol.10 (12), p.3536-3543
issn 2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_2825094229
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Additives
Alternative fuels
Carbon dioxide
Catalysts
Catalytic activity
Chemical reduction
Cobalt
Coking
Electrochemical impedance spectroscopy
Electrode materials
Electrodes
Electrolysis
Electrolytic cells
Inorganic chemistry
Iron
Manganese
Nickel
Perovskites
Reaction kinetics
Strontium
title Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20CO2%20electrolysis%20performance%20with%20various%20metal%20additives%20(Co,%20Fe,%20Ni,%20and%20Ru)%20%E2%80%93%20decorating%20the%20La(Sr)Fe(Mn)O3%20cathode%20in%20solid%20oxide%20electrolysis%20cells&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Lee,%20Sang%20Won&rft.date=2023-06-13&rft.volume=10&rft.issue=12&rft.spage=3536&rft.epage=3543&rft.pages=3536-3543&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d3qi00379e&rft_dat=%3Cproquest%3E2825094229%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p219t-50e261ff9e30d2420f3bcc0eb5d2db08ca2b3d7ff0011b51f4f72f2d5f0fa0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825094229&rft_id=info:pmid/&rfr_iscdi=true