Loading…
Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells
Perovskite oxide shows great promise as an alternative fuel electrode material in solid oxide electrolysis cells (SOEC) for the specific CO2 electrochemical reduction, because of its excellent coking resistance. However, use of perovskite oxide is limited by its poor catalytic activity in CO2 reduct...
Saved in:
Published in: | Inorganic chemistry frontiers 2023-06, Vol.10 (12), p.3536-3543 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3543 |
container_issue | 12 |
container_start_page | 3536 |
container_title | Inorganic chemistry frontiers |
container_volume | 10 |
creator | Lee, Sang Won Nam, Tae Heon Kim, Minkyu Lee, Seokhee Kyu Hyung Lee Park, Jong Hyeok Tae Ho Shin |
description | Perovskite oxide shows great promise as an alternative fuel electrode material in solid oxide electrolysis cells (SOEC) for the specific CO2 electrochemical reduction, because of its excellent coking resistance. However, use of perovskite oxide is limited by its poor catalytic activity in CO2 reduction. In this study, we investigated the use of various metal additives (Co, Fe, Ni, and Ru) on a La(Sr)Fe(Mn)O3 (LSFM) fuel electrode for CO2 reduction in a commercial infiltration process. Based on the electrochemical impedance spectroscopy (EIS) results, we determined the catalytic activity and reaction kinetics of CO2 reduction for metal catalysts. In addition, the distribution of relaxation times analysis was conducted to investigate the adsorption and dissociation processes of CO2 molecules for each catalyst. Consequently, when the Fe catalyst was applied in a LSFM fuel electrode for La0.8Sr0.2Ga0.8Mn0.2O3 (LSGM) electrolyte-supported cells, an electrolysis performance of 2.201 A cm−2 at 1.5 V in CO2 electrolysis was obtained at 1123 K. |
doi_str_mv | 10.1039/d3qi00379e |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2825094229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825094229</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-50e261ff9e30d2420f3bcc0eb5d2db08ca2b3d7ff0011b51f4f72f2d5f0fa0c3</originalsourceid><addsrcrecordid>eNpVUMtKw0AUDaJgqd34BRfctNDonZnENEsJVoVqQbsvk5k7ZiTNtJlp1Z3_4C_4ZX6JEUVwdc8DzjncKDpmeMpQ5GdabCyiyHLai3ocUx6zNBX7fzhJD6OB97bETsCcYdaLPi6bSjbKNo9QzDlQTSq0rn711sOaWuPaVWcTPNtQwU621m09rCjIGqTWNtgdeRgWbgxTGsOdHYNsNNxvR_D59g6alGtl-E4PFcFMDh_a0ZSGt81oLkDJUDlNYBvwrrYa3Ivt6L8NiuraH0UHRtaeBr-3Hy2ml4viOp7Nr26Ki1m85iwPcYrEz5kxOQnUPOFoRKkUUplqrkucKMlLoTNjEBkrU2YSk3HDdWrQSFSiH538xK5bt9mSD8snt22brnHJJ7z7WMJ5Lr4AF6Fu9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825094229</pqid></control><display><type>article</type><title>Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Lee, Sang Won ; Nam, Tae Heon ; Kim, Minkyu ; Lee, Seokhee ; Kyu Hyung Lee ; Park, Jong Hyeok ; Tae Ho Shin</creator><creatorcontrib>Lee, Sang Won ; Nam, Tae Heon ; Kim, Minkyu ; Lee, Seokhee ; Kyu Hyung Lee ; Park, Jong Hyeok ; Tae Ho Shin</creatorcontrib><description>Perovskite oxide shows great promise as an alternative fuel electrode material in solid oxide electrolysis cells (SOEC) for the specific CO2 electrochemical reduction, because of its excellent coking resistance. However, use of perovskite oxide is limited by its poor catalytic activity in CO2 reduction. In this study, we investigated the use of various metal additives (Co, Fe, Ni, and Ru) on a La(Sr)Fe(Mn)O3 (LSFM) fuel electrode for CO2 reduction in a commercial infiltration process. Based on the electrochemical impedance spectroscopy (EIS) results, we determined the catalytic activity and reaction kinetics of CO2 reduction for metal catalysts. In addition, the distribution of relaxation times analysis was conducted to investigate the adsorption and dissociation processes of CO2 molecules for each catalyst. Consequently, when the Fe catalyst was applied in a LSFM fuel electrode for La0.8Sr0.2Ga0.8Mn0.2O3 (LSGM) electrolyte-supported cells, an electrolysis performance of 2.201 A cm−2 at 1.5 V in CO2 electrolysis was obtained at 1123 K.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d3qi00379e</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Additives ; Alternative fuels ; Carbon dioxide ; Catalysts ; Catalytic activity ; Chemical reduction ; Cobalt ; Coking ; Electrochemical impedance spectroscopy ; Electrode materials ; Electrodes ; Electrolysis ; Electrolytic cells ; Inorganic chemistry ; Iron ; Manganese ; Nickel ; Perovskites ; Reaction kinetics ; Strontium</subject><ispartof>Inorganic chemistry frontiers, 2023-06, Vol.10 (12), p.3536-3543</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Sang Won</creatorcontrib><creatorcontrib>Nam, Tae Heon</creatorcontrib><creatorcontrib>Kim, Minkyu</creatorcontrib><creatorcontrib>Lee, Seokhee</creatorcontrib><creatorcontrib>Kyu Hyung Lee</creatorcontrib><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Tae Ho Shin</creatorcontrib><title>Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells</title><title>Inorganic chemistry frontiers</title><description>Perovskite oxide shows great promise as an alternative fuel electrode material in solid oxide electrolysis cells (SOEC) for the specific CO2 electrochemical reduction, because of its excellent coking resistance. However, use of perovskite oxide is limited by its poor catalytic activity in CO2 reduction. In this study, we investigated the use of various metal additives (Co, Fe, Ni, and Ru) on a La(Sr)Fe(Mn)O3 (LSFM) fuel electrode for CO2 reduction in a commercial infiltration process. Based on the electrochemical impedance spectroscopy (EIS) results, we determined the catalytic activity and reaction kinetics of CO2 reduction for metal catalysts. In addition, the distribution of relaxation times analysis was conducted to investigate the adsorption and dissociation processes of CO2 molecules for each catalyst. Consequently, when the Fe catalyst was applied in a LSFM fuel electrode for La0.8Sr0.2Ga0.8Mn0.2O3 (LSGM) electrolyte-supported cells, an electrolysis performance of 2.201 A cm−2 at 1.5 V in CO2 electrolysis was obtained at 1123 K.</description><subject>Additives</subject><subject>Alternative fuels</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Cobalt</subject><subject>Coking</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Inorganic chemistry</subject><subject>Iron</subject><subject>Manganese</subject><subject>Nickel</subject><subject>Perovskites</subject><subject>Reaction kinetics</subject><subject>Strontium</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUMtKw0AUDaJgqd34BRfctNDonZnENEsJVoVqQbsvk5k7ZiTNtJlp1Z3_4C_4ZX6JEUVwdc8DzjncKDpmeMpQ5GdabCyiyHLai3ocUx6zNBX7fzhJD6OB97bETsCcYdaLPi6bSjbKNo9QzDlQTSq0rn711sOaWuPaVWcTPNtQwU621m09rCjIGqTWNtgdeRgWbgxTGsOdHYNsNNxvR_D59g6alGtl-E4PFcFMDh_a0ZSGt81oLkDJUDlNYBvwrrYa3Ivt6L8NiuraH0UHRtaeBr-3Hy2ml4viOp7Nr26Ki1m85iwPcYrEz5kxOQnUPOFoRKkUUplqrkucKMlLoTNjEBkrU2YSk3HDdWrQSFSiH538xK5bt9mSD8snt22brnHJJ7z7WMJ5Lr4AF6Fu9A</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Lee, Sang Won</creator><creator>Nam, Tae Heon</creator><creator>Kim, Minkyu</creator><creator>Lee, Seokhee</creator><creator>Kyu Hyung Lee</creator><creator>Park, Jong Hyeok</creator><creator>Tae Ho Shin</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20230613</creationdate><title>Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells</title><author>Lee, Sang Won ; Nam, Tae Heon ; Kim, Minkyu ; Lee, Seokhee ; Kyu Hyung Lee ; Park, Jong Hyeok ; Tae Ho Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-50e261ff9e30d2420f3bcc0eb5d2db08ca2b3d7ff0011b51f4f72f2d5f0fa0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Alternative fuels</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Cobalt</topic><topic>Coking</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Inorganic chemistry</topic><topic>Iron</topic><topic>Manganese</topic><topic>Nickel</topic><topic>Perovskites</topic><topic>Reaction kinetics</topic><topic>Strontium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang Won</creatorcontrib><creatorcontrib>Nam, Tae Heon</creatorcontrib><creatorcontrib>Kim, Minkyu</creatorcontrib><creatorcontrib>Lee, Seokhee</creatorcontrib><creatorcontrib>Kyu Hyung Lee</creatorcontrib><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Tae Ho Shin</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang Won</au><au>Nam, Tae Heon</au><au>Kim, Minkyu</au><au>Lee, Seokhee</au><au>Kyu Hyung Lee</au><au>Park, Jong Hyeok</au><au>Tae Ho Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2023-06-13</date><risdate>2023</risdate><volume>10</volume><issue>12</issue><spage>3536</spage><epage>3543</epage><pages>3536-3543</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Perovskite oxide shows great promise as an alternative fuel electrode material in solid oxide electrolysis cells (SOEC) for the specific CO2 electrochemical reduction, because of its excellent coking resistance. However, use of perovskite oxide is limited by its poor catalytic activity in CO2 reduction. In this study, we investigated the use of various metal additives (Co, Fe, Ni, and Ru) on a La(Sr)Fe(Mn)O3 (LSFM) fuel electrode for CO2 reduction in a commercial infiltration process. Based on the electrochemical impedance spectroscopy (EIS) results, we determined the catalytic activity and reaction kinetics of CO2 reduction for metal catalysts. In addition, the distribution of relaxation times analysis was conducted to investigate the adsorption and dissociation processes of CO2 molecules for each catalyst. Consequently, when the Fe catalyst was applied in a LSFM fuel electrode for La0.8Sr0.2Ga0.8Mn0.2O3 (LSGM) electrolyte-supported cells, an electrolysis performance of 2.201 A cm−2 at 1.5 V in CO2 electrolysis was obtained at 1123 K.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3qi00379e</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1545 |
ispartof | Inorganic chemistry frontiers, 2023-06, Vol.10 (12), p.3536-3543 |
issn | 2052-1545 2052-1553 |
language | eng |
recordid | cdi_proquest_journals_2825094229 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Additives Alternative fuels Carbon dioxide Catalysts Catalytic activity Chemical reduction Cobalt Coking Electrochemical impedance spectroscopy Electrode materials Electrodes Electrolysis Electrolytic cells Inorganic chemistry Iron Manganese Nickel Perovskites Reaction kinetics Strontium |
title | Enhancing CO2 electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the La(Sr)Fe(Mn)O3 cathode in solid oxide electrolysis cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20CO2%20electrolysis%20performance%20with%20various%20metal%20additives%20(Co,%20Fe,%20Ni,%20and%20Ru)%20%E2%80%93%20decorating%20the%20La(Sr)Fe(Mn)O3%20cathode%20in%20solid%20oxide%20electrolysis%20cells&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Lee,%20Sang%20Won&rft.date=2023-06-13&rft.volume=10&rft.issue=12&rft.spage=3536&rft.epage=3543&rft.pages=3536-3543&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d3qi00379e&rft_dat=%3Cproquest%3E2825094229%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p219t-50e261ff9e30d2420f3bcc0eb5d2db08ca2b3d7ff0011b51f4f72f2d5f0fa0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825094229&rft_id=info:pmid/&rfr_iscdi=true |