Loading…
Two families of negacyclic BCH codes
Negacyclic BCH codes are a subclass of neagcyclic codes and are the best linear codes in many cases. However, there have been very few results on negacyclic BCH codes. Let q be an odd prime power and m be a positive integer. The objective of this paper is to study negacyclic BCH codes with length q...
Saved in:
Published in: | Designs, codes, and cryptography codes, and cryptography, 2023-07, Vol.91 (7), p.2395-2420 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-f1d8bd2e3beffc06e1029c04f68fcf46fe86837bc5cc0e6d39cd4ac500029aed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-f1d8bd2e3beffc06e1029c04f68fcf46fe86837bc5cc0e6d39cd4ac500029aed3 |
container_end_page | 2420 |
container_issue | 7 |
container_start_page | 2395 |
container_title | Designs, codes, and cryptography |
container_volume | 91 |
creator | Wang, Xiaoqiang Sun, Zhonghua Ding, Cunsheng |
description | Negacyclic BCH codes are a subclass of neagcyclic codes and are the best linear codes in many cases. However, there have been very few results on negacyclic BCH codes. Let
q
be an odd prime power and
m
be a positive integer. The objective of this paper is to study negacyclic BCH codes with length
q
m
-
1
2
and
q
m
+
1
2
over the finite field
GF
(
q
)
and analyse their parameters. The negacyclic BCH codes presented in this paper have good parameters in general, and contain many optimal linear codes. For certain
q
and
m
, compared with cyclic codes with the same dimension and length, the negacyclic BCH codes presented in this paper have a larger minimum distance in some cases. |
doi_str_mv | 10.1007/s10623-023-01208-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2825202619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825202619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f1d8bd2e3beffc06e1029c04f68fcf46fe86837bc5cc0e6d39cd4ac500029aed3</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFb_gKeAXldnZ5vN5qhBrVDwUs_LZjJbUtqm7rZI_70JEbx5eMzlfe8NT4hbBQ8KoHhMCgxqCYMUgpXmTExUXmhZ5NaciwmUmEsFiJfiKqU1ACgNOBH3y-8uC37bblpOWReyHa88nWjTUvZczTPqGk7X4iL4TeKb3zsVn68vy2ouFx9v79XTQpJW5UEG1di6QdY1h0BguO8rCWbB2EBhZgJbY3VRU04EbBpdUjPzlPfPYOm50VNxN-buY_d15HRw6-4Yd32lQ4s5AhpV9i4cXRS7lCIHt4_t1seTU-CGNdy4hoNBwxrO9JAeodSbdyuOf9H_UD8qTGDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825202619</pqid></control><display><type>article</type><title>Two families of negacyclic BCH codes</title><source>Springer Nature</source><creator>Wang, Xiaoqiang ; Sun, Zhonghua ; Ding, Cunsheng</creator><creatorcontrib>Wang, Xiaoqiang ; Sun, Zhonghua ; Ding, Cunsheng</creatorcontrib><description>Negacyclic BCH codes are a subclass of neagcyclic codes and are the best linear codes in many cases. However, there have been very few results on negacyclic BCH codes. Let
q
be an odd prime power and
m
be a positive integer. The objective of this paper is to study negacyclic BCH codes with length
q
m
-
1
2
and
q
m
+
1
2
over the finite field
GF
(
q
)
and analyse their parameters. The negacyclic BCH codes presented in this paper have good parameters in general, and contain many optimal linear codes. For certain
q
and
m
, compared with cyclic codes with the same dimension and length, the negacyclic BCH codes presented in this paper have a larger minimum distance in some cases.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-023-01208-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>BCH codes ; Coding and Information Theory ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Fields (mathematics) ; Parameters</subject><ispartof>Designs, codes, and cryptography, 2023-07, Vol.91 (7), p.2395-2420</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f1d8bd2e3beffc06e1029c04f68fcf46fe86837bc5cc0e6d39cd4ac500029aed3</citedby><cites>FETCH-LOGICAL-c319t-f1d8bd2e3beffc06e1029c04f68fcf46fe86837bc5cc0e6d39cd4ac500029aed3</cites><orcidid>0000-0001-7717-6133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Wang, Xiaoqiang</creatorcontrib><creatorcontrib>Sun, Zhonghua</creatorcontrib><creatorcontrib>Ding, Cunsheng</creatorcontrib><title>Two families of negacyclic BCH codes</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Negacyclic BCH codes are a subclass of neagcyclic codes and are the best linear codes in many cases. However, there have been very few results on negacyclic BCH codes. Let
q
be an odd prime power and
m
be a positive integer. The objective of this paper is to study negacyclic BCH codes with length
q
m
-
1
2
and
q
m
+
1
2
over the finite field
GF
(
q
)
and analyse their parameters. The negacyclic BCH codes presented in this paper have good parameters in general, and contain many optimal linear codes. For certain
q
and
m
, compared with cyclic codes with the same dimension and length, the negacyclic BCH codes presented in this paper have a larger minimum distance in some cases.</description><subject>BCH codes</subject><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Fields (mathematics)</subject><subject>Parameters</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFb_gKeAXldnZ5vN5qhBrVDwUs_LZjJbUtqm7rZI_70JEbx5eMzlfe8NT4hbBQ8KoHhMCgxqCYMUgpXmTExUXmhZ5NaciwmUmEsFiJfiKqU1ACgNOBH3y-8uC37bblpOWReyHa88nWjTUvZczTPqGk7X4iL4TeKb3zsVn68vy2ouFx9v79XTQpJW5UEG1di6QdY1h0BguO8rCWbB2EBhZgJbY3VRU04EbBpdUjPzlPfPYOm50VNxN-buY_d15HRw6-4Yd32lQ4s5AhpV9i4cXRS7lCIHt4_t1seTU-CGNdy4hoNBwxrO9JAeodSbdyuOf9H_UD8qTGDE</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wang, Xiaoqiang</creator><creator>Sun, Zhonghua</creator><creator>Ding, Cunsheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7717-6133</orcidid></search><sort><creationdate>20230701</creationdate><title>Two families of negacyclic BCH codes</title><author>Wang, Xiaoqiang ; Sun, Zhonghua ; Ding, Cunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f1d8bd2e3beffc06e1029c04f68fcf46fe86837bc5cc0e6d39cd4ac500029aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BCH codes</topic><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Fields (mathematics)</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoqiang</creatorcontrib><creatorcontrib>Sun, Zhonghua</creatorcontrib><creatorcontrib>Ding, Cunsheng</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoqiang</au><au>Sun, Zhonghua</au><au>Ding, Cunsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two families of negacyclic BCH codes</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>91</volume><issue>7</issue><spage>2395</spage><epage>2420</epage><pages>2395-2420</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Negacyclic BCH codes are a subclass of neagcyclic codes and are the best linear codes in many cases. However, there have been very few results on negacyclic BCH codes. Let
q
be an odd prime power and
m
be a positive integer. The objective of this paper is to study negacyclic BCH codes with length
q
m
-
1
2
and
q
m
+
1
2
over the finite field
GF
(
q
)
and analyse their parameters. The negacyclic BCH codes presented in this paper have good parameters in general, and contain many optimal linear codes. For certain
q
and
m
, compared with cyclic codes with the same dimension and length, the negacyclic BCH codes presented in this paper have a larger minimum distance in some cases.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-023-01208-6</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-7717-6133</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-1022 |
ispartof | Designs, codes, and cryptography, 2023-07, Vol.91 (7), p.2395-2420 |
issn | 0925-1022 1573-7586 |
language | eng |
recordid | cdi_proquest_journals_2825202619 |
source | Springer Nature |
subjects | BCH codes Coding and Information Theory Computer Science Cryptology Discrete Mathematics in Computer Science Fields (mathematics) Parameters |
title | Two families of negacyclic BCH codes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20families%20of%20negacyclic%20BCH%20codes&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Wang,%20Xiaoqiang&rft.date=2023-07-01&rft.volume=91&rft.issue=7&rft.spage=2395&rft.epage=2420&rft.pages=2395-2420&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-023-01208-6&rft_dat=%3Cproquest_cross%3E2825202619%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f1d8bd2e3beffc06e1029c04f68fcf46fe86837bc5cc0e6d39cd4ac500029aed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825202619&rft_id=info:pmid/&rfr_iscdi=true |