Loading…
Nonparametric empirical Bayes biomarker imputation and estimation
Biomarkers are often measured in bulk to diagnose patients, monitor patient conditions, and research novel drug pathways. The measurement of these biomarkers often suffers from detection limits that result in missing and untrustworthy measurements. Frequently, missing biomarkers are imputed so that...
Saved in:
Published in: | arXiv.org 2023-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Barbehenn, Alton Sihai Dave Zhao |
description | Biomarkers are often measured in bulk to diagnose patients, monitor patient conditions, and research novel drug pathways. The measurement of these biomarkers often suffers from detection limits that result in missing and untrustworthy measurements. Frequently, missing biomarkers are imputed so that down-stream analysis can be conducted with modern statistical methods that cannot normally handle data subject to informative censoring. This work develops an empirical Bayes \(g\)-modeling method for imputing and denoising biomarker measurements. We establish superior estimation properties compared to popular methods in simulations and demonstrate the utility of the estimated biomarker measurements for down-stream analysis. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2825306692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825306692</sourcerecordid><originalsourceid>FETCH-proquest_journals_28253066923</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxBcT61JFceXKfXnVCKnNx3wW3t4gHsDVMMxMSAWcr5p2DTAjdYwDYwzkBoTgFdldnPUY0KgU9I0q43UhjnSPbxVpr53B8FSBauNzwqSdpWjvVMWkzVcXZPrAMar6xzlZno7Xw7nxwb1y-brB5WBL6qAFwZmUW-D_XR_lpzpP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825306692</pqid></control><display><type>article</type><title>Nonparametric empirical Bayes biomarker imputation and estimation</title><source>Publicly Available Content Database</source><creator>Barbehenn, Alton ; Sihai Dave Zhao</creator><creatorcontrib>Barbehenn, Alton ; Sihai Dave Zhao</creatorcontrib><description>Biomarkers are often measured in bulk to diagnose patients, monitor patient conditions, and research novel drug pathways. The measurement of these biomarkers often suffers from detection limits that result in missing and untrustworthy measurements. Frequently, missing biomarkers are imputed so that down-stream analysis can be conducted with modern statistical methods that cannot normally handle data subject to informative censoring. This work develops an empirical Bayes \(g\)-modeling method for imputing and denoising biomarker measurements. We establish superior estimation properties compared to popular methods in simulations and demonstrate the utility of the estimated biomarker measurements for down-stream analysis.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biomarkers ; Empirical analysis ; Statistical methods</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2825306692?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Barbehenn, Alton</creatorcontrib><creatorcontrib>Sihai Dave Zhao</creatorcontrib><title>Nonparametric empirical Bayes biomarker imputation and estimation</title><title>arXiv.org</title><description>Biomarkers are often measured in bulk to diagnose patients, monitor patient conditions, and research novel drug pathways. The measurement of these biomarkers often suffers from detection limits that result in missing and untrustworthy measurements. Frequently, missing biomarkers are imputed so that down-stream analysis can be conducted with modern statistical methods that cannot normally handle data subject to informative censoring. This work develops an empirical Bayes \(g\)-modeling method for imputing and denoising biomarker measurements. We establish superior estimation properties compared to popular methods in simulations and demonstrate the utility of the estimated biomarker measurements for down-stream analysis.</description><subject>Biomarkers</subject><subject>Empirical analysis</subject><subject>Statistical methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxBcT61JFceXKfXnVCKnNx3wW3t4gHsDVMMxMSAWcr5p2DTAjdYwDYwzkBoTgFdldnPUY0KgU9I0q43UhjnSPbxVpr53B8FSBauNzwqSdpWjvVMWkzVcXZPrAMar6xzlZno7Xw7nxwb1y-brB5WBL6qAFwZmUW-D_XR_lpzpP</recordid><startdate>20230612</startdate><enddate>20230612</enddate><creator>Barbehenn, Alton</creator><creator>Sihai Dave Zhao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230612</creationdate><title>Nonparametric empirical Bayes biomarker imputation and estimation</title><author>Barbehenn, Alton ; Sihai Dave Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28253066923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Empirical analysis</topic><topic>Statistical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Barbehenn, Alton</creatorcontrib><creatorcontrib>Sihai Dave Zhao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbehenn, Alton</au><au>Sihai Dave Zhao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nonparametric empirical Bayes biomarker imputation and estimation</atitle><jtitle>arXiv.org</jtitle><date>2023-06-12</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Biomarkers are often measured in bulk to diagnose patients, monitor patient conditions, and research novel drug pathways. The measurement of these biomarkers often suffers from detection limits that result in missing and untrustworthy measurements. Frequently, missing biomarkers are imputed so that down-stream analysis can be conducted with modern statistical methods that cannot normally handle data subject to informative censoring. This work develops an empirical Bayes \(g\)-modeling method for imputing and denoising biomarker measurements. We establish superior estimation properties compared to popular methods in simulations and demonstrate the utility of the estimated biomarker measurements for down-stream analysis.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2825306692 |
source | Publicly Available Content Database |
subjects | Biomarkers Empirical analysis Statistical methods |
title | Nonparametric empirical Bayes biomarker imputation and estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nonparametric%20empirical%20Bayes%20biomarker%20imputation%20and%20estimation&rft.jtitle=arXiv.org&rft.au=Barbehenn,%20Alton&rft.date=2023-06-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2825306692%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28253066923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825306692&rft_id=info:pmid/&rfr_iscdi=true |