Loading…

Highly economic and waste valorization strategy for multicomponent and Knoevenagel reactions using water extract of tamarind seed ash

The application of solid organic waste-originated products in the preparation of synthetically and biologically significant compounds in aqueous media or pure water is a highly desired task in chemical synthesis that shows an effective solution to the circular economy and sustainable environment. In...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2023-06, Vol.30 (28), p.71420-71429
Main Authors: Naidu, Bandameeda Ramesh, Lakshmidevi, Jangam, Venkateswarlu, Katta, Lakkaboyana, Sivarama Krishna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application of solid organic waste-originated products in the preparation of synthetically and biologically significant compounds in aqueous media or pure water is a highly desired task in chemical synthesis that shows an effective solution to the circular economy and sustainable environment. In this article, we describe our research on the development of highly economic and sustainable protocols for the synthesis of biologically important oxygen-heterocycles (using a multicomponent reaction) and synthetically important olefins (via the Knoevenagel condensation reaction) using water extract of tamarind seed ash (WETS) as catalyst and aqueous reaction medium. The reactions are carried out at room temperature (RT) under toxic/problematic/volatile organic solvent-free conditions. Products of the current methods have been purified by using recrystallization technique. WETS was characterized from its FTIR, powder XRD, SEM, and EDAX data. Problematic and non-renewable solvents were avoided throughout the process from their synthesis to purification. The utilization of solid organic waste-originated catalyst and aqueous media, avoid of non-renewable substances as catalysts, media, separation solvents and promoters, and unobligating heating conditions can surely attract the attention of chemists towards exploring the waste-based products in chemical transformations. Graphical abstract
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-022-20124-1