Loading…
Semipermeable barrier-assisted electrophoretic deposition of robust collagen membranes
Collagen membranes with high robustness and a defined stable biodegradation are of a great interest for dental surgery. Electrophoretic deposition (EPD) is a perspective candidate technology for their production, and in this article, the authors demonstrated the capabilities of its modification, a s...
Saved in:
Published in: | Journal of materials science 2023-06, Vol.58 (23), p.9675-9697 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-cdc837fe04c194330b03e4c37ed4cf305542e6fc5672a3bf0459a8034e70b4f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-cdc837fe04c194330b03e4c37ed4cf305542e6fc5672a3bf0459a8034e70b4f3 |
container_end_page | 9697 |
container_issue | 23 |
container_start_page | 9675 |
container_title | Journal of materials science |
container_volume | 58 |
creator | Antoshin, Artem Dubinin, Oleg Miao, Lei Istranova, Elena Bikmulina, Polina Fayzullin, Alexey Magdanov, Azat Kravchik, Marina Kosheleva, Nastasia Solovieva, Anna Sadchikova, Elena Kotova, Svetlana Efremov, Yuri Qu, Xue Butnaru, Denis Evlashin, Stanislav Shpichka, Anastasia Liu, Changsheng Timashev, Peter |
description | Collagen membranes with high robustness and a defined stable biodegradation are of a great interest for dental surgery. Electrophoretic deposition (EPD) is a perspective candidate technology for their production, and in this article, the authors demonstrated the capabilities of its modification, a semipermeable barrier-assisted EPD (SBA-EPD). The SBA-EPD process was carried out at 60 V for 1,2, or 3 cycles 20 min each, after which the obtained membranes were crosslinked with 0.625% genipin. SBA-EPD allowed for the fabrication of membranes with high collagen packing density (0.0012 g/mm
3
) and high robustness, which depended on the number of SBA-EPD cycles. The highest Young’s modulus, tensile strength, and strain at failure values of non-crosslinked samples corresponded to 3-cycle deposition (15.11 ± 1.78 MPa, 4.2 ± 1.6 MPa, 60 ± 12%, respectively). However, crosslinking diminished the statistical difference of these parameters among membranes of different deposition cycles (reaching for 3-cycle deposition 64 ± 5 MPa, 9.5 ± 1.1 MPa, 23.7 ± 2.0%, respectively). On day 21 after subcutaneous implantation, the non-crosslinked membranes showed a significant degree of resorption higher than that of crosslinked ones by 3.5 times in absolute values. As well, crosslinked membranes elicited a greater peri-implant pro-fibrotic and giant cell response. Overall, the mechanical characteristics of SBA-EPD membranes were mostly superior to commercially available products used for dental applications, while their biodegradation timeframes fitted the optimal window. The authors hope that their research will attract the attention to SBA-EPD as an emerging and perspective technology for the production of robust and defect-free collagen membranes for dental surgery.
Graphical abstract |
doi_str_mv | 10.1007/s10853-023-08641-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2825580686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752835130</galeid><sourcerecordid>A752835130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-cdc837fe04c194330b03e4c37ed4cf305542e6fc5672a3bf0459a8034e70b4f3</originalsourceid><addsrcrecordid>eNp9kV1LHTEQhoNY8Gj7B7xa6JUXaydfu-uliFVBEFR6G7LZyTGyu9lmcuD03zf1FOSASAiB4XkyzLyMnXI45wDtD-LQaVmDKLdrFK-3B2zFdStr1YE8ZCsAIWqhGn7EjoleAUC3gq_YryecwoJpQtuPWPU2pYCptkSBMg4VjuhyistLTJiDqwZcIoUc4lxFX6XYbyhXLo6jXeNcTTj1yc5IX9kXb0fCb__fE_b88_r56ra-f7i5u7q8r50SkGs3uE62HkE5fqGkhB4kKidbHJTzErRWAhvvdNMKK3sPSl_YMpDCFnrl5Qn7vvt2SfH3Bimb17hJc-loRCe07qDpmndqbUc0YfYxJ-umQM5ctlp0UnMJhTr_gCpnKBtycUYfSn1PONsTCpNxm9d2Q2Tunh73WbFjXYpECb1ZUphs-mM4mH8Jml2CpiRo3hI02yLJnUQFnteY3qf7xPoLrzOdrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825580686</pqid></control><display><type>article</type><title>Semipermeable barrier-assisted electrophoretic deposition of robust collagen membranes</title><source>Springer Nature</source><creator>Antoshin, Artem ; Dubinin, Oleg ; Miao, Lei ; Istranova, Elena ; Bikmulina, Polina ; Fayzullin, Alexey ; Magdanov, Azat ; Kravchik, Marina ; Kosheleva, Nastasia ; Solovieva, Anna ; Sadchikova, Elena ; Kotova, Svetlana ; Efremov, Yuri ; Qu, Xue ; Butnaru, Denis ; Evlashin, Stanislav ; Shpichka, Anastasia ; Liu, Changsheng ; Timashev, Peter</creator><creatorcontrib>Antoshin, Artem ; Dubinin, Oleg ; Miao, Lei ; Istranova, Elena ; Bikmulina, Polina ; Fayzullin, Alexey ; Magdanov, Azat ; Kravchik, Marina ; Kosheleva, Nastasia ; Solovieva, Anna ; Sadchikova, Elena ; Kotova, Svetlana ; Efremov, Yuri ; Qu, Xue ; Butnaru, Denis ; Evlashin, Stanislav ; Shpichka, Anastasia ; Liu, Changsheng ; Timashev, Peter</creatorcontrib><description>Collagen membranes with high robustness and a defined stable biodegradation are of a great interest for dental surgery. Electrophoretic deposition (EPD) is a perspective candidate technology for their production, and in this article, the authors demonstrated the capabilities of its modification, a semipermeable barrier-assisted EPD (SBA-EPD). The SBA-EPD process was carried out at 60 V for 1,2, or 3 cycles 20 min each, after which the obtained membranes were crosslinked with 0.625% genipin. SBA-EPD allowed for the fabrication of membranes with high collagen packing density (0.0012 g/mm
3
) and high robustness, which depended on the number of SBA-EPD cycles. The highest Young’s modulus, tensile strength, and strain at failure values of non-crosslinked samples corresponded to 3-cycle deposition (15.11 ± 1.78 MPa, 4.2 ± 1.6 MPa, 60 ± 12%, respectively). However, crosslinking diminished the statistical difference of these parameters among membranes of different deposition cycles (reaching for 3-cycle deposition 64 ± 5 MPa, 9.5 ± 1.1 MPa, 23.7 ± 2.0%, respectively). On day 21 after subcutaneous implantation, the non-crosslinked membranes showed a significant degree of resorption higher than that of crosslinked ones by 3.5 times in absolute values. As well, crosslinked membranes elicited a greater peri-implant pro-fibrotic and giant cell response. Overall, the mechanical characteristics of SBA-EPD membranes were mostly superior to commercially available products used for dental applications, while their biodegradation timeframes fitted the optimal window. The authors hope that their research will attract the attention to SBA-EPD as an emerging and perspective technology for the production of robust and defect-free collagen membranes for dental surgery.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-08641-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biodegradation ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Collagen ; Crosslinked polymers ; Crosslinking ; Crystallography and Scattering Methods ; Dental materials ; Dental surgery ; Electrophoretic deposition ; Genipin ; Materials for Life Sciences ; Materials Science ; Mechanical properties ; Membranes ; Modulus of elasticity ; Packing density ; Polymer Sciences ; Robustness ; Solid Mechanics ; Surgery ; Technology application ; Tensile strength</subject><ispartof>Journal of materials science, 2023-06, Vol.58 (23), p.9675-9697</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-cdc837fe04c194330b03e4c37ed4cf305542e6fc5672a3bf0459a8034e70b4f3</citedby><cites>FETCH-LOGICAL-c420t-cdc837fe04c194330b03e4c37ed4cf305542e6fc5672a3bf0459a8034e70b4f3</cites><orcidid>0000-0001-7773-2435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Antoshin, Artem</creatorcontrib><creatorcontrib>Dubinin, Oleg</creatorcontrib><creatorcontrib>Miao, Lei</creatorcontrib><creatorcontrib>Istranova, Elena</creatorcontrib><creatorcontrib>Bikmulina, Polina</creatorcontrib><creatorcontrib>Fayzullin, Alexey</creatorcontrib><creatorcontrib>Magdanov, Azat</creatorcontrib><creatorcontrib>Kravchik, Marina</creatorcontrib><creatorcontrib>Kosheleva, Nastasia</creatorcontrib><creatorcontrib>Solovieva, Anna</creatorcontrib><creatorcontrib>Sadchikova, Elena</creatorcontrib><creatorcontrib>Kotova, Svetlana</creatorcontrib><creatorcontrib>Efremov, Yuri</creatorcontrib><creatorcontrib>Qu, Xue</creatorcontrib><creatorcontrib>Butnaru, Denis</creatorcontrib><creatorcontrib>Evlashin, Stanislav</creatorcontrib><creatorcontrib>Shpichka, Anastasia</creatorcontrib><creatorcontrib>Liu, Changsheng</creatorcontrib><creatorcontrib>Timashev, Peter</creatorcontrib><title>Semipermeable barrier-assisted electrophoretic deposition of robust collagen membranes</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Collagen membranes with high robustness and a defined stable biodegradation are of a great interest for dental surgery. Electrophoretic deposition (EPD) is a perspective candidate technology for their production, and in this article, the authors demonstrated the capabilities of its modification, a semipermeable barrier-assisted EPD (SBA-EPD). The SBA-EPD process was carried out at 60 V for 1,2, or 3 cycles 20 min each, after which the obtained membranes were crosslinked with 0.625% genipin. SBA-EPD allowed for the fabrication of membranes with high collagen packing density (0.0012 g/mm
3
) and high robustness, which depended on the number of SBA-EPD cycles. The highest Young’s modulus, tensile strength, and strain at failure values of non-crosslinked samples corresponded to 3-cycle deposition (15.11 ± 1.78 MPa, 4.2 ± 1.6 MPa, 60 ± 12%, respectively). However, crosslinking diminished the statistical difference of these parameters among membranes of different deposition cycles (reaching for 3-cycle deposition 64 ± 5 MPa, 9.5 ± 1.1 MPa, 23.7 ± 2.0%, respectively). On day 21 after subcutaneous implantation, the non-crosslinked membranes showed a significant degree of resorption higher than that of crosslinked ones by 3.5 times in absolute values. As well, crosslinked membranes elicited a greater peri-implant pro-fibrotic and giant cell response. Overall, the mechanical characteristics of SBA-EPD membranes were mostly superior to commercially available products used for dental applications, while their biodegradation timeframes fitted the optimal window. The authors hope that their research will attract the attention to SBA-EPD as an emerging and perspective technology for the production of robust and defect-free collagen membranes for dental surgery.
Graphical abstract</description><subject>Biodegradation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Collagen</subject><subject>Crosslinked polymers</subject><subject>Crosslinking</subject><subject>Crystallography and Scattering Methods</subject><subject>Dental materials</subject><subject>Dental surgery</subject><subject>Electrophoretic deposition</subject><subject>Genipin</subject><subject>Materials for Life Sciences</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Modulus of elasticity</subject><subject>Packing density</subject><subject>Polymer Sciences</subject><subject>Robustness</subject><subject>Solid Mechanics</subject><subject>Surgery</subject><subject>Technology application</subject><subject>Tensile strength</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LHTEQhoNY8Gj7B7xa6JUXaydfu-uliFVBEFR6G7LZyTGyu9lmcuD03zf1FOSASAiB4XkyzLyMnXI45wDtD-LQaVmDKLdrFK-3B2zFdStr1YE8ZCsAIWqhGn7EjoleAUC3gq_YryecwoJpQtuPWPU2pYCptkSBMg4VjuhyistLTJiDqwZcIoUc4lxFX6XYbyhXLo6jXeNcTTj1yc5IX9kXb0fCb__fE_b88_r56ra-f7i5u7q8r50SkGs3uE62HkE5fqGkhB4kKidbHJTzErRWAhvvdNMKK3sPSl_YMpDCFnrl5Qn7vvt2SfH3Bimb17hJc-loRCe07qDpmndqbUc0YfYxJ-umQM5ctlp0UnMJhTr_gCpnKBtycUYfSn1PONsTCpNxm9d2Q2Tunh73WbFjXYpECb1ZUphs-mM4mH8Jml2CpiRo3hI02yLJnUQFnteY3qf7xPoLrzOdrQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Antoshin, Artem</creator><creator>Dubinin, Oleg</creator><creator>Miao, Lei</creator><creator>Istranova, Elena</creator><creator>Bikmulina, Polina</creator><creator>Fayzullin, Alexey</creator><creator>Magdanov, Azat</creator><creator>Kravchik, Marina</creator><creator>Kosheleva, Nastasia</creator><creator>Solovieva, Anna</creator><creator>Sadchikova, Elena</creator><creator>Kotova, Svetlana</creator><creator>Efremov, Yuri</creator><creator>Qu, Xue</creator><creator>Butnaru, Denis</creator><creator>Evlashin, Stanislav</creator><creator>Shpichka, Anastasia</creator><creator>Liu, Changsheng</creator><creator>Timashev, Peter</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7773-2435</orcidid></search><sort><creationdate>20230601</creationdate><title>Semipermeable barrier-assisted electrophoretic deposition of robust collagen membranes</title><author>Antoshin, Artem ; Dubinin, Oleg ; Miao, Lei ; Istranova, Elena ; Bikmulina, Polina ; Fayzullin, Alexey ; Magdanov, Azat ; Kravchik, Marina ; Kosheleva, Nastasia ; Solovieva, Anna ; Sadchikova, Elena ; Kotova, Svetlana ; Efremov, Yuri ; Qu, Xue ; Butnaru, Denis ; Evlashin, Stanislav ; Shpichka, Anastasia ; Liu, Changsheng ; Timashev, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-cdc837fe04c194330b03e4c37ed4cf305542e6fc5672a3bf0459a8034e70b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biodegradation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Collagen</topic><topic>Crosslinked polymers</topic><topic>Crosslinking</topic><topic>Crystallography and Scattering Methods</topic><topic>Dental materials</topic><topic>Dental surgery</topic><topic>Electrophoretic deposition</topic><topic>Genipin</topic><topic>Materials for Life Sciences</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Modulus of elasticity</topic><topic>Packing density</topic><topic>Polymer Sciences</topic><topic>Robustness</topic><topic>Solid Mechanics</topic><topic>Surgery</topic><topic>Technology application</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antoshin, Artem</creatorcontrib><creatorcontrib>Dubinin, Oleg</creatorcontrib><creatorcontrib>Miao, Lei</creatorcontrib><creatorcontrib>Istranova, Elena</creatorcontrib><creatorcontrib>Bikmulina, Polina</creatorcontrib><creatorcontrib>Fayzullin, Alexey</creatorcontrib><creatorcontrib>Magdanov, Azat</creatorcontrib><creatorcontrib>Kravchik, Marina</creatorcontrib><creatorcontrib>Kosheleva, Nastasia</creatorcontrib><creatorcontrib>Solovieva, Anna</creatorcontrib><creatorcontrib>Sadchikova, Elena</creatorcontrib><creatorcontrib>Kotova, Svetlana</creatorcontrib><creatorcontrib>Efremov, Yuri</creatorcontrib><creatorcontrib>Qu, Xue</creatorcontrib><creatorcontrib>Butnaru, Denis</creatorcontrib><creatorcontrib>Evlashin, Stanislav</creatorcontrib><creatorcontrib>Shpichka, Anastasia</creatorcontrib><creatorcontrib>Liu, Changsheng</creatorcontrib><creatorcontrib>Timashev, Peter</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antoshin, Artem</au><au>Dubinin, Oleg</au><au>Miao, Lei</au><au>Istranova, Elena</au><au>Bikmulina, Polina</au><au>Fayzullin, Alexey</au><au>Magdanov, Azat</au><au>Kravchik, Marina</au><au>Kosheleva, Nastasia</au><au>Solovieva, Anna</au><au>Sadchikova, Elena</au><au>Kotova, Svetlana</au><au>Efremov, Yuri</au><au>Qu, Xue</au><au>Butnaru, Denis</au><au>Evlashin, Stanislav</au><au>Shpichka, Anastasia</au><au>Liu, Changsheng</au><au>Timashev, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semipermeable barrier-assisted electrophoretic deposition of robust collagen membranes</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>58</volume><issue>23</issue><spage>9675</spage><epage>9697</epage><pages>9675-9697</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Collagen membranes with high robustness and a defined stable biodegradation are of a great interest for dental surgery. Electrophoretic deposition (EPD) is a perspective candidate technology for their production, and in this article, the authors demonstrated the capabilities of its modification, a semipermeable barrier-assisted EPD (SBA-EPD). The SBA-EPD process was carried out at 60 V for 1,2, or 3 cycles 20 min each, after which the obtained membranes were crosslinked with 0.625% genipin. SBA-EPD allowed for the fabrication of membranes with high collagen packing density (0.0012 g/mm
3
) and high robustness, which depended on the number of SBA-EPD cycles. The highest Young’s modulus, tensile strength, and strain at failure values of non-crosslinked samples corresponded to 3-cycle deposition (15.11 ± 1.78 MPa, 4.2 ± 1.6 MPa, 60 ± 12%, respectively). However, crosslinking diminished the statistical difference of these parameters among membranes of different deposition cycles (reaching for 3-cycle deposition 64 ± 5 MPa, 9.5 ± 1.1 MPa, 23.7 ± 2.0%, respectively). On day 21 after subcutaneous implantation, the non-crosslinked membranes showed a significant degree of resorption higher than that of crosslinked ones by 3.5 times in absolute values. As well, crosslinked membranes elicited a greater peri-implant pro-fibrotic and giant cell response. Overall, the mechanical characteristics of SBA-EPD membranes were mostly superior to commercially available products used for dental applications, while their biodegradation timeframes fitted the optimal window. The authors hope that their research will attract the attention to SBA-EPD as an emerging and perspective technology for the production of robust and defect-free collagen membranes for dental surgery.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-08641-x</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7773-2435</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2023-06, Vol.58 (23), p.9675-9697 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2825580686 |
source | Springer Nature |
subjects | Biodegradation Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Collagen Crosslinked polymers Crosslinking Crystallography and Scattering Methods Dental materials Dental surgery Electrophoretic deposition Genipin Materials for Life Sciences Materials Science Mechanical properties Membranes Modulus of elasticity Packing density Polymer Sciences Robustness Solid Mechanics Surgery Technology application Tensile strength |
title | Semipermeable barrier-assisted electrophoretic deposition of robust collagen membranes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semipermeable%20barrier-assisted%20electrophoretic%20deposition%20of%20robust%20collagen%20membranes&rft.jtitle=Journal%20of%20materials%20science&rft.au=Antoshin,%20Artem&rft.date=2023-06-01&rft.volume=58&rft.issue=23&rft.spage=9675&rft.epage=9697&rft.pages=9675-9697&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-08641-x&rft_dat=%3Cgale_proqu%3EA752835130%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-cdc837fe04c194330b03e4c37ed4cf305542e6fc5672a3bf0459a8034e70b4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825580686&rft_id=info:pmid/&rft_galeid=A752835130&rfr_iscdi=true |