Loading…
Porous NiCo2O4 electrodes for high-energy asymmetric supercapacitor: effect of annealing
Nickel–cobalt hydroxide thin films were synthesized using the chemical bath deposition method, and the effect of thermal annealing (373–673 K) on their physicochemical and electrochemical characteristics was explored. The X-ray diffraction study showed a cubic crystalline structure of NiCo 2 O 4 ele...
Saved in:
Published in: | Journal of materials science 2023-06, Vol.58 (23), p.9586-9604 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-29de754b1b2d1479eca62fbefe982d15ff191f1c542741f493ff0bbbc19ba92e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-29de754b1b2d1479eca62fbefe982d15ff191f1c542741f493ff0bbbc19ba92e3 |
container_end_page | 9604 |
container_issue | 23 |
container_start_page | 9586 |
container_title | Journal of materials science |
container_volume | 58 |
creator | Thorat, J. P. Nikam, R. P. Lokhande, V. C. Lokhande, C. D. |
description | Nickel–cobalt hydroxide thin films were synthesized using the chemical bath deposition method, and the effect of thermal annealing (373–673 K) on their physicochemical and electrochemical characteristics was explored. The X-ray diffraction study showed a cubic crystalline structure of NiCo
2
O
4
electrode formed above annealing temperature of 573 K. Field emission scanning electron spectroscopy (FE-SEM) study revealed that after annealing, NiCo
2
O
4
electrode showed urchin-like microspheres morphology with superhydrophilic nature. The electrode annealed at 573 K exhibited outstanding electrochemical performance with a specific capacitance of 470 F g
−1
at 0.4 A g
−1
current density. Over 2000 cycles, electrode demonstrated capacitive retention of 75.55%. Finally, NiCo
2
O
4
and Fe
2
O
3
thin films were used to construct the asymmetric supercapacitor (ASC) device. The ASC device manifested energy density of 40 Wh kg
−1
at power density of 1.66 kW kg
−1
and 82% retention after 2000 CV cycles.
Graphical Abstract |
doi_str_mv | 10.1007/s10853-023-08602-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2825580713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825580713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-29de754b1b2d1479eca62fbefe982d15ff191f1c542741f493ff0bbbc19ba92e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczSTj-7GmxS_oFgPCt5CNp1st7SbNdk99N-7WsGbh2FgeJ934CHkEvg1cF7cZOClloyLccoZF0wdkQnoQjJVcnlMJpwLwYSawSk5y3nDOdeFgAn5eI0pDpm-NPMoloriFn2f4gozDTHRdVOvGbaY6j11eb_bYZ8aT_PQYfKuc77pY7qlGMKI0Rioa1t026atz8lJcNuMF797St4f7t_mT2yxfHye3y2Yl2B6JswKC60qqMQKVGHQu5kIFQY05XjRIYCBAF4rUSgIysgQeFVVHkzljEA5JVeH3i7FzwFzbzdxSO340opSaF3yAuSYEoeUTzHnhMF2qdm5tLfA7bdBezBoR4P2x6BVIyQPUB7DbY3pr_of6guObHR5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825580713</pqid></control><display><type>article</type><title>Porous NiCo2O4 electrodes for high-energy asymmetric supercapacitor: effect of annealing</title><source>Springer Nature</source><creator>Thorat, J. P. ; Nikam, R. P. ; Lokhande, V. C. ; Lokhande, C. D.</creator><creatorcontrib>Thorat, J. P. ; Nikam, R. P. ; Lokhande, V. C. ; Lokhande, C. D.</creatorcontrib><description>Nickel–cobalt hydroxide thin films were synthesized using the chemical bath deposition method, and the effect of thermal annealing (373–673 K) on their physicochemical and electrochemical characteristics was explored. The X-ray diffraction study showed a cubic crystalline structure of NiCo
2
O
4
electrode formed above annealing temperature of 573 K. Field emission scanning electron spectroscopy (FE-SEM) study revealed that after annealing, NiCo
2
O
4
electrode showed urchin-like microspheres morphology with superhydrophilic nature. The electrode annealed at 573 K exhibited outstanding electrochemical performance with a specific capacitance of 470 F g
−1
at 0.4 A g
−1
current density. Over 2000 cycles, electrode demonstrated capacitive retention of 75.55%. Finally, NiCo
2
O
4
and Fe
2
O
3
thin films were used to construct the asymmetric supercapacitor (ASC) device. The ASC device manifested energy density of 40 Wh kg
−1
at power density of 1.66 kW kg
−1
and 82% retention after 2000 CV cycles.
Graphical Abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-08602-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorption ; Annealing ; Asymmetry ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electrochemical analysis ; Electrodes ; Electrolytes ; Emission analysis ; Energy Materials ; Energy storage ; Field emission spectroscopy ; Materials Science ; Microspheres ; Morphology ; Nickel compounds ; Polymer Sciences ; Solid Mechanics ; Supercapacitors ; Temperature effects ; Thin films</subject><ispartof>Journal of materials science, 2023-06, Vol.58 (23), p.9586-9604</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-29de754b1b2d1479eca62fbefe982d15ff191f1c542741f493ff0bbbc19ba92e3</citedby><cites>FETCH-LOGICAL-c319t-29de754b1b2d1479eca62fbefe982d15ff191f1c542741f493ff0bbbc19ba92e3</cites><orcidid>0009-0008-0012-1431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Thorat, J. P.</creatorcontrib><creatorcontrib>Nikam, R. P.</creatorcontrib><creatorcontrib>Lokhande, V. C.</creatorcontrib><creatorcontrib>Lokhande, C. D.</creatorcontrib><title>Porous NiCo2O4 electrodes for high-energy asymmetric supercapacitor: effect of annealing</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Nickel–cobalt hydroxide thin films were synthesized using the chemical bath deposition method, and the effect of thermal annealing (373–673 K) on their physicochemical and electrochemical characteristics was explored. The X-ray diffraction study showed a cubic crystalline structure of NiCo
2
O
4
electrode formed above annealing temperature of 573 K. Field emission scanning electron spectroscopy (FE-SEM) study revealed that after annealing, NiCo
2
O
4
electrode showed urchin-like microspheres morphology with superhydrophilic nature. The electrode annealed at 573 K exhibited outstanding electrochemical performance with a specific capacitance of 470 F g
−1
at 0.4 A g
−1
current density. Over 2000 cycles, electrode demonstrated capacitive retention of 75.55%. Finally, NiCo
2
O
4
and Fe
2
O
3
thin films were used to construct the asymmetric supercapacitor (ASC) device. The ASC device manifested energy density of 40 Wh kg
−1
at power density of 1.66 kW kg
−1
and 82% retention after 2000 CV cycles.
Graphical Abstract</description><subject>Adsorption</subject><subject>Annealing</subject><subject>Asymmetry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Emission analysis</subject><subject>Energy Materials</subject><subject>Energy storage</subject><subject>Field emission spectroscopy</subject><subject>Materials Science</subject><subject>Microspheres</subject><subject>Morphology</subject><subject>Nickel compounds</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Supercapacitors</subject><subject>Temperature effects</subject><subject>Thin films</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczSTj-7GmxS_oFgPCt5CNp1st7SbNdk99N-7WsGbh2FgeJ934CHkEvg1cF7cZOClloyLccoZF0wdkQnoQjJVcnlMJpwLwYSawSk5y3nDOdeFgAn5eI0pDpm-NPMoloriFn2f4gozDTHRdVOvGbaY6j11eb_bYZ8aT_PQYfKuc77pY7qlGMKI0Rioa1t026atz8lJcNuMF797St4f7t_mT2yxfHye3y2Yl2B6JswKC60qqMQKVGHQu5kIFQY05XjRIYCBAF4rUSgIysgQeFVVHkzljEA5JVeH3i7FzwFzbzdxSO340opSaF3yAuSYEoeUTzHnhMF2qdm5tLfA7bdBezBoR4P2x6BVIyQPUB7DbY3pr_of6guObHR5</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Thorat, J. P.</creator><creator>Nikam, R. P.</creator><creator>Lokhande, V. C.</creator><creator>Lokhande, C. D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0009-0008-0012-1431</orcidid></search><sort><creationdate>20230601</creationdate><title>Porous NiCo2O4 electrodes for high-energy asymmetric supercapacitor: effect of annealing</title><author>Thorat, J. P. ; Nikam, R. P. ; Lokhande, V. C. ; Lokhande, C. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-29de754b1b2d1479eca62fbefe982d15ff191f1c542741f493ff0bbbc19ba92e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Annealing</topic><topic>Asymmetry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Emission analysis</topic><topic>Energy Materials</topic><topic>Energy storage</topic><topic>Field emission spectroscopy</topic><topic>Materials Science</topic><topic>Microspheres</topic><topic>Morphology</topic><topic>Nickel compounds</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Supercapacitors</topic><topic>Temperature effects</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thorat, J. P.</creatorcontrib><creatorcontrib>Nikam, R. P.</creatorcontrib><creatorcontrib>Lokhande, V. C.</creatorcontrib><creatorcontrib>Lokhande, C. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thorat, J. P.</au><au>Nikam, R. P.</au><au>Lokhande, V. C.</au><au>Lokhande, C. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous NiCo2O4 electrodes for high-energy asymmetric supercapacitor: effect of annealing</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>58</volume><issue>23</issue><spage>9586</spage><epage>9604</epage><pages>9586-9604</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Nickel–cobalt hydroxide thin films were synthesized using the chemical bath deposition method, and the effect of thermal annealing (373–673 K) on their physicochemical and electrochemical characteristics was explored. The X-ray diffraction study showed a cubic crystalline structure of NiCo
2
O
4
electrode formed above annealing temperature of 573 K. Field emission scanning electron spectroscopy (FE-SEM) study revealed that after annealing, NiCo
2
O
4
electrode showed urchin-like microspheres morphology with superhydrophilic nature. The electrode annealed at 573 K exhibited outstanding electrochemical performance with a specific capacitance of 470 F g
−1
at 0.4 A g
−1
current density. Over 2000 cycles, electrode demonstrated capacitive retention of 75.55%. Finally, NiCo
2
O
4
and Fe
2
O
3
thin films were used to construct the asymmetric supercapacitor (ASC) device. The ASC device manifested energy density of 40 Wh kg
−1
at power density of 1.66 kW kg
−1
and 82% retention after 2000 CV cycles.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-08602-4</doi><tpages>19</tpages><orcidid>https://orcid.org/0009-0008-0012-1431</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2023-06, Vol.58 (23), p.9586-9604 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2825580713 |
source | Springer Nature |
subjects | Adsorption Annealing Asymmetry Characterization and Evaluation of Materials Chemical synthesis Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Electrochemical analysis Electrodes Electrolytes Emission analysis Energy Materials Energy storage Field emission spectroscopy Materials Science Microspheres Morphology Nickel compounds Polymer Sciences Solid Mechanics Supercapacitors Temperature effects Thin films |
title | Porous NiCo2O4 electrodes for high-energy asymmetric supercapacitor: effect of annealing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20NiCo2O4%20electrodes%20for%20high-energy%20asymmetric%20supercapacitor:%20effect%20of%20annealing&rft.jtitle=Journal%20of%20materials%20science&rft.au=Thorat,%20J.%20P.&rft.date=2023-06-01&rft.volume=58&rft.issue=23&rft.spage=9586&rft.epage=9604&rft.pages=9586-9604&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-08602-4&rft_dat=%3Cproquest_cross%3E2825580713%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-29de754b1b2d1479eca62fbefe982d15ff191f1c542741f493ff0bbbc19ba92e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825580713&rft_id=info:pmid/&rfr_iscdi=true |