Loading…
Formation and Decay of Autoionization States as the Main Inelastic Energy Loss Mechanism in keV Atomic Collisions
It has been shown that the formation of autoionization states makes the dominant contribution to inelastic energy loss and to ionization in keV atomic collisions, i.e., at velocities lower than the velocities of atomic electrons. Scaling laws have been proposed to calculate the cross sections for th...
Saved in:
Published in: | Journal of experimental and theoretical physics 2023-05, Vol.136 (5), p.662-681 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It has been shown that the formation of autoionization states makes the dominant contribution to inelastic energy loss and to ionization in keV atomic collisions, i.e., at velocities lower than the velocities of atomic electrons. Scaling laws have been proposed to calculate the cross sections for the formation of vacancies in inner
K
and
L
electron shells of colliding atoms. A model has been proposed to relate ionization processes and the observed inelastic energy losses. Auger transitions in a short-lived quasimolecule formed by two atoms approaching each other have been studied. The nature of the continuous component in electron spectra emitted in collisions has been determined. It has been shown that the excitation of autoionization states determines the stopping cross sections for keV atoms in matter. |
---|---|
ISSN: | 1063-7761 1090-6509 |
DOI: | 10.1134/S1063776123050138 |