Loading…

Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities

In certain polytopal domains Ω , in space dimension d = 2 , 3 , we prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in H 1 ( Ω ) for weighted analytic function classes. These classes comprise in particular solution sets of source and eigenvalue problems for elliptic PDEs wi...

Full description

Saved in:
Bibliographic Details
Published in:Foundations of computational mathematics 2023-06, Vol.23 (3), p.1043-1127
Main Authors: Marcati, Carlo, Opschoor, Joost A. A., Petersen, Philipp C., Schwab, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393
cites cdi_FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393
container_end_page 1127
container_issue 3
container_start_page 1043
container_title Foundations of computational mathematics
container_volume 23
creator Marcati, Carlo
Opschoor, Joost A. A.
Petersen, Philipp C.
Schwab, Christoph
description In certain polytopal domains Ω , in space dimension d = 2 , 3 , we prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in H 1 ( Ω ) for weighted analytic function classes. These classes comprise in particular solution sets of source and eigenvalue problems for elliptic PDEs with analytic data. Functions in these classes are locally analytic on open subdomains D ⊂ Ω , but may exhibit isolated point singularities in the interior of Ω or corner and edge singularities at the boundary ∂ Ω . The exponential approximation rates are shown to hold in space dimension d = 2 on Lipschitz polygons with straight sides, and in space dimension d = 3 on Fichera-type polyhedral domains with plane faces. The constructive proofs indicate that NN depth and size increase poly-logarithmically with respect to the target NN approximation accuracy ε > 0 in H 1 ( Ω ) . The results cover solution sets of linear, second-order elliptic PDEs with analytic data and certain nonlinear elliptic eigenvalue problems with analytic nonlinearities and singular, weighted analytic potentials as arise in electron structure models. Here, the functions correspond to electron densities that exhibit isolated point singularities at the nuclei.
doi_str_mv 10.1007/s10208-022-09565-9
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2826385492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A753163280</galeid><sourcerecordid>A753163280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhZeSQpO0f6AnQU45bDKSVuvV0QSnDZi0OMlZyNrRotSWHElL3H9fOS4NBlN0mMfwPUm8V1VfKVxRgMl1osCgq4GxGqRoRS0_VKe0paLmvOMn__REfKrOUnoGoELS5rR6nG03waPPTq_IAudP5B7HWPQ95tcQf5HpZhPD1q11dsGThc6YiA2R_AzOZ6J9T2b9gOTB-WFc6eiyw_S5-mj1KuGXv_O8erqdPd58r-c_vt3dTOe1EcBy3QgtQGrDOi4nRjbt0gKHpdSW214YkH3HlsDQdpoKw3rDDDacG2aXRXLJz6uL_b3liy8jpqyewxh9eVKxjrW8E41k79SgV6ictyFHbdYuGTWdCE5bzjooVH2EGtBjSaMkZF1ZH_BXR_hyelw7c9RweWAoTMZtHvSYkrp7WByybM-aGFKKaNUmlgrib0VB7QpX-8JVKVy9Fa52afC9KRXYDxjf0_iP6w_Zsqsh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826385492</pqid></control><display><type>article</type><title>Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities</title><source>Springer Nature</source><creator>Marcati, Carlo ; Opschoor, Joost A. A. ; Petersen, Philipp C. ; Schwab, Christoph</creator><creatorcontrib>Marcati, Carlo ; Opschoor, Joost A. A. ; Petersen, Philipp C. ; Schwab, Christoph</creatorcontrib><description>In certain polytopal domains Ω , in space dimension d = 2 , 3 , we prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in H 1 ( Ω ) for weighted analytic function classes. These classes comprise in particular solution sets of source and eigenvalue problems for elliptic PDEs with analytic data. Functions in these classes are locally analytic on open subdomains D ⊂ Ω , but may exhibit isolated point singularities in the interior of Ω or corner and edge singularities at the boundary ∂ Ω . The exponential approximation rates are shown to hold in space dimension d = 2 on Lipschitz polygons with straight sides, and in space dimension d = 3 on Fichera-type polyhedral domains with plane faces. The constructive proofs indicate that NN depth and size increase poly-logarithmically with respect to the target NN approximation accuracy ε &gt; 0 in H 1 ( Ω ) . The results cover solution sets of linear, second-order elliptic PDEs with analytic data and certain nonlinear elliptic eigenvalue problems with analytic nonlinearities and singular, weighted analytic potentials as arise in electron structure models. Here, the functions correspond to electron densities that exhibit isolated point singularities at the nuclei.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-022-09565-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytic functions ; Applications of Mathematics ; Approximation ; Computer Science ; Data analysis ; Domains ; Economics ; Eigenvalues ; Electronic structure ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Neural networks ; Nonlinearity ; Numerical Analysis ; Singularities</subject><ispartof>Foundations of computational mathematics, 2023-06, Vol.23 (3), p.1043-1127</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393</citedby><cites>FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marcati, Carlo</creatorcontrib><creatorcontrib>Opschoor, Joost A. A.</creatorcontrib><creatorcontrib>Petersen, Philipp C.</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><title>Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>In certain polytopal domains Ω , in space dimension d = 2 , 3 , we prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in H 1 ( Ω ) for weighted analytic function classes. These classes comprise in particular solution sets of source and eigenvalue problems for elliptic PDEs with analytic data. Functions in these classes are locally analytic on open subdomains D ⊂ Ω , but may exhibit isolated point singularities in the interior of Ω or corner and edge singularities at the boundary ∂ Ω . The exponential approximation rates are shown to hold in space dimension d = 2 on Lipschitz polygons with straight sides, and in space dimension d = 3 on Fichera-type polyhedral domains with plane faces. The constructive proofs indicate that NN depth and size increase poly-logarithmically with respect to the target NN approximation accuracy ε &gt; 0 in H 1 ( Ω ) . The results cover solution sets of linear, second-order elliptic PDEs with analytic data and certain nonlinear elliptic eigenvalue problems with analytic nonlinearities and singular, weighted analytic potentials as arise in electron structure models. Here, the functions correspond to electron densities that exhibit isolated point singularities at the nuclei.</description><subject>Analytic functions</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Domains</subject><subject>Economics</subject><subject>Eigenvalues</subject><subject>Electronic structure</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Numerical Analysis</subject><subject>Singularities</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrGzEQhZeSQpO0f6AnQU45bDKSVuvV0QSnDZi0OMlZyNrRotSWHElL3H9fOS4NBlN0mMfwPUm8V1VfKVxRgMl1osCgq4GxGqRoRS0_VKe0paLmvOMn__REfKrOUnoGoELS5rR6nG03waPPTq_IAudP5B7HWPQ95tcQf5HpZhPD1q11dsGThc6YiA2R_AzOZ6J9T2b9gOTB-WFc6eiyw_S5-mj1KuGXv_O8erqdPd58r-c_vt3dTOe1EcBy3QgtQGrDOi4nRjbt0gKHpdSW214YkH3HlsDQdpoKw3rDDDacG2aXRXLJz6uL_b3liy8jpqyewxh9eVKxjrW8E41k79SgV6ictyFHbdYuGTWdCE5bzjooVH2EGtBjSaMkZF1ZH_BXR_hyelw7c9RweWAoTMZtHvSYkrp7WByybM-aGFKKaNUmlgrib0VB7QpX-8JVKVy9Fa52afC9KRXYDxjf0_iP6w_Zsqsh</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Marcati, Carlo</creator><creator>Opschoor, Joost A. A.</creator><creator>Petersen, Philipp C.</creator><creator>Schwab, Christoph</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230601</creationdate><title>Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities</title><author>Marcati, Carlo ; Opschoor, Joost A. A. ; Petersen, Philipp C. ; Schwab, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytic functions</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Domains</topic><topic>Economics</topic><topic>Eigenvalues</topic><topic>Electronic structure</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Numerical Analysis</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcati, Carlo</creatorcontrib><creatorcontrib>Opschoor, Joost A. A.</creatorcontrib><creatorcontrib>Petersen, Philipp C.</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Science in Context</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcati, Carlo</au><au>Opschoor, Joost A. A.</au><au>Petersen, Philipp C.</au><au>Schwab, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><spage>1043</spage><epage>1127</epage><pages>1043-1127</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>In certain polytopal domains Ω , in space dimension d = 2 , 3 , we prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in H 1 ( Ω ) for weighted analytic function classes. These classes comprise in particular solution sets of source and eigenvalue problems for elliptic PDEs with analytic data. Functions in these classes are locally analytic on open subdomains D ⊂ Ω , but may exhibit isolated point singularities in the interior of Ω or corner and edge singularities at the boundary ∂ Ω . The exponential approximation rates are shown to hold in space dimension d = 2 on Lipschitz polygons with straight sides, and in space dimension d = 3 on Fichera-type polyhedral domains with plane faces. The constructive proofs indicate that NN depth and size increase poly-logarithmically with respect to the target NN approximation accuracy ε &gt; 0 in H 1 ( Ω ) . The results cover solution sets of linear, second-order elliptic PDEs with analytic data and certain nonlinear elliptic eigenvalue problems with analytic nonlinearities and singular, weighted analytic potentials as arise in electron structure models. Here, the functions correspond to electron densities that exhibit isolated point singularities at the nuclei.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-022-09565-9</doi><tpages>85</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2023-06, Vol.23 (3), p.1043-1127
issn 1615-3375
1615-3383
language eng
recordid cdi_proquest_journals_2826385492
source Springer Nature
subjects Analytic functions
Applications of Mathematics
Approximation
Computer Science
Data analysis
Domains
Economics
Eigenvalues
Electronic structure
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrix Theory
Neural networks
Nonlinearity
Numerical Analysis
Singularities
title Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20ReLU%20Neural%20Network%20Approximation%20Rates%20for%20Point%20and%20Edge%20Singularities&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Marcati,%20Carlo&rft.date=2023-06-01&rft.volume=23&rft.issue=3&rft.spage=1043&rft.epage=1127&rft.pages=1043-1127&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-022-09565-9&rft_dat=%3Cgale_proqu%3EA753163280%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2826385492&rft_id=info:pmid/&rft_galeid=A753163280&rfr_iscdi=true