Loading…
Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities
In certain polytopal domains Ω , in space dimension d = 2 , 3 , we prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in H 1 ( Ω ) for weighted analytic function classes. These classes comprise in particular solution sets of source and eigenvalue problems for elliptic PDEs wi...
Saved in:
Published in: | Foundations of computational mathematics 2023-06, Vol.23 (3), p.1043-1127 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393 |
---|---|
cites | cdi_FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393 |
container_end_page | 1127 |
container_issue | 3 |
container_start_page | 1043 |
container_title | Foundations of computational mathematics |
container_volume | 23 |
creator | Marcati, Carlo Opschoor, Joost A. A. Petersen, Philipp C. Schwab, Christoph |
description | In certain polytopal domains
Ω
, in space dimension
d
=
2
,
3
, we prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in
H
1
(
Ω
)
for weighted analytic function classes. These classes comprise in particular solution sets of source and eigenvalue problems for elliptic PDEs with analytic data. Functions in these classes are locally analytic on open subdomains
D
⊂
Ω
, but may exhibit isolated point singularities in the interior of
Ω
or corner and edge singularities at the boundary
∂
Ω
. The exponential approximation rates are shown to hold in space dimension
d
=
2
on Lipschitz polygons with straight sides, and in space dimension
d
=
3
on Fichera-type polyhedral domains with plane faces. The constructive proofs indicate that NN depth and size increase poly-logarithmically with respect to the target NN approximation accuracy
ε
>
0
in
H
1
(
Ω
)
. The results cover solution sets of linear, second-order elliptic PDEs with analytic data and certain nonlinear elliptic eigenvalue problems with analytic nonlinearities and singular, weighted analytic potentials as arise in electron structure models. Here, the functions correspond to electron densities that exhibit isolated point singularities at the nuclei. |
doi_str_mv | 10.1007/s10208-022-09565-9 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2826385492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A753163280</galeid><sourcerecordid>A753163280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhZeSQpO0f6AnQU45bDKSVuvV0QSnDZi0OMlZyNrRotSWHElL3H9fOS4NBlN0mMfwPUm8V1VfKVxRgMl1osCgq4GxGqRoRS0_VKe0paLmvOMn__REfKrOUnoGoELS5rR6nG03waPPTq_IAudP5B7HWPQ95tcQf5HpZhPD1q11dsGThc6YiA2R_AzOZ6J9T2b9gOTB-WFc6eiyw_S5-mj1KuGXv_O8erqdPd58r-c_vt3dTOe1EcBy3QgtQGrDOi4nRjbt0gKHpdSW214YkH3HlsDQdpoKw3rDDDacG2aXRXLJz6uL_b3liy8jpqyewxh9eVKxjrW8E41k79SgV6ictyFHbdYuGTWdCE5bzjooVH2EGtBjSaMkZF1ZH_BXR_hyelw7c9RweWAoTMZtHvSYkrp7WByybM-aGFKKaNUmlgrib0VB7QpX-8JVKVy9Fa52afC9KRXYDxjf0_iP6w_Zsqsh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826385492</pqid></control><display><type>article</type><title>Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities</title><source>Springer Nature</source><creator>Marcati, Carlo ; Opschoor, Joost A. A. ; Petersen, Philipp C. ; Schwab, Christoph</creator><creatorcontrib>Marcati, Carlo ; Opschoor, Joost A. A. ; Petersen, Philipp C. ; Schwab, Christoph</creatorcontrib><description>In certain polytopal domains
Ω
, in space dimension
d
=
2
,
3
, we prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in
H
1
(
Ω
)
for weighted analytic function classes. These classes comprise in particular solution sets of source and eigenvalue problems for elliptic PDEs with analytic data. Functions in these classes are locally analytic on open subdomains
D
⊂
Ω
, but may exhibit isolated point singularities in the interior of
Ω
or corner and edge singularities at the boundary
∂
Ω
. The exponential approximation rates are shown to hold in space dimension
d
=
2
on Lipschitz polygons with straight sides, and in space dimension
d
=
3
on Fichera-type polyhedral domains with plane faces. The constructive proofs indicate that NN depth and size increase poly-logarithmically with respect to the target NN approximation accuracy
ε
>
0
in
H
1
(
Ω
)
. The results cover solution sets of linear, second-order elliptic PDEs with analytic data and certain nonlinear elliptic eigenvalue problems with analytic nonlinearities and singular, weighted analytic potentials as arise in electron structure models. Here, the functions correspond to electron densities that exhibit isolated point singularities at the nuclei.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-022-09565-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytic functions ; Applications of Mathematics ; Approximation ; Computer Science ; Data analysis ; Domains ; Economics ; Eigenvalues ; Electronic structure ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Neural networks ; Nonlinearity ; Numerical Analysis ; Singularities</subject><ispartof>Foundations of computational mathematics, 2023-06, Vol.23 (3), p.1043-1127</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393</citedby><cites>FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marcati, Carlo</creatorcontrib><creatorcontrib>Opschoor, Joost A. A.</creatorcontrib><creatorcontrib>Petersen, Philipp C.</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><title>Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>In certain polytopal domains
Ω
, in space dimension
d
=
2
,
3
, we prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in
H
1
(
Ω
)
for weighted analytic function classes. These classes comprise in particular solution sets of source and eigenvalue problems for elliptic PDEs with analytic data. Functions in these classes are locally analytic on open subdomains
D
⊂
Ω
, but may exhibit isolated point singularities in the interior of
Ω
or corner and edge singularities at the boundary
∂
Ω
. The exponential approximation rates are shown to hold in space dimension
d
=
2
on Lipschitz polygons with straight sides, and in space dimension
d
=
3
on Fichera-type polyhedral domains with plane faces. The constructive proofs indicate that NN depth and size increase poly-logarithmically with respect to the target NN approximation accuracy
ε
>
0
in
H
1
(
Ω
)
. The results cover solution sets of linear, second-order elliptic PDEs with analytic data and certain nonlinear elliptic eigenvalue problems with analytic nonlinearities and singular, weighted analytic potentials as arise in electron structure models. Here, the functions correspond to electron densities that exhibit isolated point singularities at the nuclei.</description><subject>Analytic functions</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Domains</subject><subject>Economics</subject><subject>Eigenvalues</subject><subject>Electronic structure</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Numerical Analysis</subject><subject>Singularities</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrGzEQhZeSQpO0f6AnQU45bDKSVuvV0QSnDZi0OMlZyNrRotSWHElL3H9fOS4NBlN0mMfwPUm8V1VfKVxRgMl1osCgq4GxGqRoRS0_VKe0paLmvOMn__REfKrOUnoGoELS5rR6nG03waPPTq_IAudP5B7HWPQ95tcQf5HpZhPD1q11dsGThc6YiA2R_AzOZ6J9T2b9gOTB-WFc6eiyw_S5-mj1KuGXv_O8erqdPd58r-c_vt3dTOe1EcBy3QgtQGrDOi4nRjbt0gKHpdSW214YkH3HlsDQdpoKw3rDDDacG2aXRXLJz6uL_b3liy8jpqyewxh9eVKxjrW8E41k79SgV6ictyFHbdYuGTWdCE5bzjooVH2EGtBjSaMkZF1ZH_BXR_hyelw7c9RweWAoTMZtHvSYkrp7WByybM-aGFKKaNUmlgrib0VB7QpX-8JVKVy9Fa52afC9KRXYDxjf0_iP6w_Zsqsh</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Marcati, Carlo</creator><creator>Opschoor, Joost A. A.</creator><creator>Petersen, Philipp C.</creator><creator>Schwab, Christoph</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230601</creationdate><title>Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities</title><author>Marcati, Carlo ; Opschoor, Joost A. A. ; Petersen, Philipp C. ; Schwab, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytic functions</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Domains</topic><topic>Economics</topic><topic>Eigenvalues</topic><topic>Electronic structure</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Numerical Analysis</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcati, Carlo</creatorcontrib><creatorcontrib>Opschoor, Joost A. A.</creatorcontrib><creatorcontrib>Petersen, Philipp C.</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Science in Context</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcati, Carlo</au><au>Opschoor, Joost A. A.</au><au>Petersen, Philipp C.</au><au>Schwab, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><spage>1043</spage><epage>1127</epage><pages>1043-1127</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>In certain polytopal domains
Ω
, in space dimension
d
=
2
,
3
, we prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in
H
1
(
Ω
)
for weighted analytic function classes. These classes comprise in particular solution sets of source and eigenvalue problems for elliptic PDEs with analytic data. Functions in these classes are locally analytic on open subdomains
D
⊂
Ω
, but may exhibit isolated point singularities in the interior of
Ω
or corner and edge singularities at the boundary
∂
Ω
. The exponential approximation rates are shown to hold in space dimension
d
=
2
on Lipschitz polygons with straight sides, and in space dimension
d
=
3
on Fichera-type polyhedral domains with plane faces. The constructive proofs indicate that NN depth and size increase poly-logarithmically with respect to the target NN approximation accuracy
ε
>
0
in
H
1
(
Ω
)
. The results cover solution sets of linear, second-order elliptic PDEs with analytic data and certain nonlinear elliptic eigenvalue problems with analytic nonlinearities and singular, weighted analytic potentials as arise in electron structure models. Here, the functions correspond to electron densities that exhibit isolated point singularities at the nuclei.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-022-09565-9</doi><tpages>85</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-3375 |
ispartof | Foundations of computational mathematics, 2023-06, Vol.23 (3), p.1043-1127 |
issn | 1615-3375 1615-3383 |
language | eng |
recordid | cdi_proquest_journals_2826385492 |
source | Springer Nature |
subjects | Analytic functions Applications of Mathematics Approximation Computer Science Data analysis Domains Economics Eigenvalues Electronic structure Linear and Multilinear Algebras Math Applications in Computer Science Mathematical analysis Mathematics Mathematics and Statistics Matrix Theory Neural networks Nonlinearity Numerical Analysis Singularities |
title | Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20ReLU%20Neural%20Network%20Approximation%20Rates%20for%20Point%20and%20Edge%20Singularities&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Marcati,%20Carlo&rft.date=2023-06-01&rft.volume=23&rft.issue=3&rft.spage=1043&rft.epage=1127&rft.pages=1043-1127&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-022-09565-9&rft_dat=%3Cgale_proqu%3EA753163280%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-45a509ac28397c946bf030b9af3fd5c09d82b02ef8a15c2dc2ce433c2fbc2c393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2826385492&rft_id=info:pmid/&rft_galeid=A753163280&rfr_iscdi=true |