Loading…

Risk-aware Trajectory Sampling for Quadrotor Obstacle Avoidance in Dynamic Environments

Obstacle avoidance of quadrotors in dynamic environments is still a very open problem. Current works commonly leverage traditional static maps to represent static obstacles, and the detection and tracking of moving objects (DATMO) method to model dynamic obstacles separately. The detection module re...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2023-12, Vol.70 (12), p.1-10
Main Authors: Chen, Gang, Peng, Peng, Zhang, Peihan, Dong, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Obstacle avoidance of quadrotors in dynamic environments is still a very open problem. Current works commonly leverage traditional static maps to represent static obstacles, and the detection and tracking of moving objects (DATMO) method to model dynamic obstacles separately. The detection module requires pre-training, and the dynamic obstacles can only be modeled with certain shapes, such as cylinders or ellipsoids. This work utilizes the dual-structure particle-based (DSP) dynamic occupancy map to represent the arbitrarily-shaped static obstacles and dynamic obstacles simultaneously, and proposes an efficient risk-aware sampling-based local trajectory planner to realize safe flights. The trajectory is planned by sampling motion primitives generated in the state space. Each motion primitive is divided into two phases: a short-term phase with a strict risk limitation and a relatively long-term phase designed to avoid high-risk regions. The risk is evaluated with the predicted particle-form future occupancy status, considering the time dimension. With an approach of splitting from and merging to an arbitrary global trajectory, the planner can also be used in tasks with preplanned global trajectories. Comparison experiments show that the obstacle avoidance system composed of the DSP map and our planner performs the best in dynamic environments. In real-world tests, our quadrotor reaches a speed of 6 m/s with the motion capture system and 2.5 m/s with everything running on a low-price single-board computer.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2023.3239775