Loading…
Mathematics of projective versus perspective collineations in camera orientation and calibration
This paper presents a preliminary result of ongoing research on monitoring natural disasters induce structural infrastructures damages by using off-the-shelf digital camera. It’s Orientation and calibration algorithm that steamed from a more general pinhole camera model can be varied into two distin...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2614 |
creator | Tjahjadi, Martinus Edwin Parsamardhani, Larasaty Ayu |
description | This paper presents a preliminary result of ongoing research on monitoring natural disasters induce structural infrastructures damages by using off-the-shelf digital camera. It’s Orientation and calibration algorithm that steamed from a more general pinhole camera model can be varied into two distinct approaches: projective collineation and perspective collineation which widely embraced by computer vision community and photogrammetric community respectively. This research investigates reliabilities of those varying methods for computing orientation and calibration of the captured images of a bridge. Some photographs of the surveyed bridge were processed using two proprietary software which each employs different collineation algorithm. Some findings reveal that the projective collineation algorithm uses more robust matrix operation but requires more parameters and consequently need more correspondent points on each captured image. On the other hand, fewer parameters and common points are required for the more rigorous perspective model although it requires a nonlinear relationship of matrix operations. Results show that the projective collineation algorithm gives higher model stability but requires more stable camera and optics. Furthermore, figures and numbers are provided to support our findings that both algorithms produce approximately equal precision of the orientation and calibration parameters. |
doi_str_mv | 10.1063/5.0125841 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2826494556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826494556</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-283f79abbcb18407880c4c5ccd6b7872f9bb127ec0e66009515ef3863c8ef0853</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAnTA172SWUnxBxY2Cu5ikCaZMJ2MyLfjvjW3BnavDPXz3cS4AlxjNMBL0hs8QJlwxfAQmmHPcSIHFMZgg1LKGMPp-Cs5KWSFEWinVBHw8m_HTr80YXYEpwCGnlXdj3Hq49blsChyqDAfLpa6Lva906guMPXRm7bOBKUffjzsbmn5Z7S7avKvPwUkwXfEXB52Ct_u71_ljs3h5eJrfLpoBCzU2RNEgW2Ots1gxJJVCjjnu3FJYqSQJrbWYSO-QF6KG4Zj7QJWgTvmAFKdTcLWfWxN8bXwZ9Sptcl9XaqKIYC3jXFTqek8VF_f36iHHtcnfepuy5vrwPT0sw38wRvr33X8N9AfhZ3M-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2826494556</pqid></control><display><type>conference_proceeding</type><title>Mathematics of projective versus perspective collineations in camera orientation and calibration</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Tjahjadi, Martinus Edwin ; Parsamardhani, Larasaty Ayu</creator><contributor>Shimizu, Kinya ; Sugianto ; Cahyono, Edy ; Masturi ; Lam, Cher Ping ; Aazmi, Shafiq</contributor><creatorcontrib>Tjahjadi, Martinus Edwin ; Parsamardhani, Larasaty Ayu ; Shimizu, Kinya ; Sugianto ; Cahyono, Edy ; Masturi ; Lam, Cher Ping ; Aazmi, Shafiq</creatorcontrib><description>This paper presents a preliminary result of ongoing research on monitoring natural disasters induce structural infrastructures damages by using off-the-shelf digital camera. It’s Orientation and calibration algorithm that steamed from a more general pinhole camera model can be varied into two distinct approaches: projective collineation and perspective collineation which widely embraced by computer vision community and photogrammetric community respectively. This research investigates reliabilities of those varying methods for computing orientation and calibration of the captured images of a bridge. Some photographs of the surveyed bridge were processed using two proprietary software which each employs different collineation algorithm. Some findings reveal that the projective collineation algorithm uses more robust matrix operation but requires more parameters and consequently need more correspondent points on each captured image. On the other hand, fewer parameters and common points are required for the more rigorous perspective model although it requires a nonlinear relationship of matrix operations. Results show that the projective collineation algorithm gives higher model stability but requires more stable camera and optics. Furthermore, figures and numbers are provided to support our findings that both algorithms produce approximately equal precision of the orientation and calibration parameters.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0125841</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Calibration ; Computer vision ; Digital cameras ; Mathematical models ; Natural disasters ; Orientation ; Parameters ; Photogrammetry ; Pinhole cameras ; Robustness (mathematics)</subject><ispartof>AIP conference proceedings, 2023, Vol.2614 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Shimizu, Kinya</contributor><contributor>Sugianto</contributor><contributor>Cahyono, Edy</contributor><contributor>Masturi</contributor><contributor>Lam, Cher Ping</contributor><contributor>Aazmi, Shafiq</contributor><creatorcontrib>Tjahjadi, Martinus Edwin</creatorcontrib><creatorcontrib>Parsamardhani, Larasaty Ayu</creatorcontrib><title>Mathematics of projective versus perspective collineations in camera orientation and calibration</title><title>AIP conference proceedings</title><description>This paper presents a preliminary result of ongoing research on monitoring natural disasters induce structural infrastructures damages by using off-the-shelf digital camera. It’s Orientation and calibration algorithm that steamed from a more general pinhole camera model can be varied into two distinct approaches: projective collineation and perspective collineation which widely embraced by computer vision community and photogrammetric community respectively. This research investigates reliabilities of those varying methods for computing orientation and calibration of the captured images of a bridge. Some photographs of the surveyed bridge were processed using two proprietary software which each employs different collineation algorithm. Some findings reveal that the projective collineation algorithm uses more robust matrix operation but requires more parameters and consequently need more correspondent points on each captured image. On the other hand, fewer parameters and common points are required for the more rigorous perspective model although it requires a nonlinear relationship of matrix operations. Results show that the projective collineation algorithm gives higher model stability but requires more stable camera and optics. Furthermore, figures and numbers are provided to support our findings that both algorithms produce approximately equal precision of the orientation and calibration parameters.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Computer vision</subject><subject>Digital cameras</subject><subject>Mathematical models</subject><subject>Natural disasters</subject><subject>Orientation</subject><subject>Parameters</subject><subject>Photogrammetry</subject><subject>Pinhole cameras</subject><subject>Robustness (mathematics)</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAnTA172SWUnxBxY2Cu5ikCaZMJ2MyLfjvjW3BnavDPXz3cS4AlxjNMBL0hs8QJlwxfAQmmHPcSIHFMZgg1LKGMPp-Cs5KWSFEWinVBHw8m_HTr80YXYEpwCGnlXdj3Hq49blsChyqDAfLpa6Lva906guMPXRm7bOBKUffjzsbmn5Z7S7avKvPwUkwXfEXB52Ct_u71_ljs3h5eJrfLpoBCzU2RNEgW2Ots1gxJJVCjjnu3FJYqSQJrbWYSO-QF6KG4Zj7QJWgTvmAFKdTcLWfWxN8bXwZ9Sptcl9XaqKIYC3jXFTqek8VF_f36iHHtcnfepuy5vrwPT0sw38wRvr33X8N9AfhZ3M-</recordid><startdate>20230616</startdate><enddate>20230616</enddate><creator>Tjahjadi, Martinus Edwin</creator><creator>Parsamardhani, Larasaty Ayu</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230616</creationdate><title>Mathematics of projective versus perspective collineations in camera orientation and calibration</title><author>Tjahjadi, Martinus Edwin ; Parsamardhani, Larasaty Ayu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-283f79abbcb18407880c4c5ccd6b7872f9bb127ec0e66009515ef3863c8ef0853</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Computer vision</topic><topic>Digital cameras</topic><topic>Mathematical models</topic><topic>Natural disasters</topic><topic>Orientation</topic><topic>Parameters</topic><topic>Photogrammetry</topic><topic>Pinhole cameras</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tjahjadi, Martinus Edwin</creatorcontrib><creatorcontrib>Parsamardhani, Larasaty Ayu</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tjahjadi, Martinus Edwin</au><au>Parsamardhani, Larasaty Ayu</au><au>Shimizu, Kinya</au><au>Sugianto</au><au>Cahyono, Edy</au><au>Masturi</au><au>Lam, Cher Ping</au><au>Aazmi, Shafiq</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mathematics of projective versus perspective collineations in camera orientation and calibration</atitle><btitle>AIP conference proceedings</btitle><date>2023-06-16</date><risdate>2023</risdate><volume>2614</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper presents a preliminary result of ongoing research on monitoring natural disasters induce structural infrastructures damages by using off-the-shelf digital camera. It’s Orientation and calibration algorithm that steamed from a more general pinhole camera model can be varied into two distinct approaches: projective collineation and perspective collineation which widely embraced by computer vision community and photogrammetric community respectively. This research investigates reliabilities of those varying methods for computing orientation and calibration of the captured images of a bridge. Some photographs of the surveyed bridge were processed using two proprietary software which each employs different collineation algorithm. Some findings reveal that the projective collineation algorithm uses more robust matrix operation but requires more parameters and consequently need more correspondent points on each captured image. On the other hand, fewer parameters and common points are required for the more rigorous perspective model although it requires a nonlinear relationship of matrix operations. Results show that the projective collineation algorithm gives higher model stability but requires more stable camera and optics. Furthermore, figures and numbers are provided to support our findings that both algorithms produce approximately equal precision of the orientation and calibration parameters.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0125841</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2614 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2826494556 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms Calibration Computer vision Digital cameras Mathematical models Natural disasters Orientation Parameters Photogrammetry Pinhole cameras Robustness (mathematics) |
title | Mathematics of projective versus perspective collineations in camera orientation and calibration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mathematics%20of%20projective%20versus%20perspective%20collineations%20in%20camera%20orientation%20and%20calibration&rft.btitle=AIP%20conference%20proceedings&rft.au=Tjahjadi,%20Martinus%20Edwin&rft.date=2023-06-16&rft.volume=2614&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0125841&rft_dat=%3Cproquest_scita%3E2826494556%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p168t-283f79abbcb18407880c4c5ccd6b7872f9bb127ec0e66009515ef3863c8ef0853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2826494556&rft_id=info:pmid/&rfr_iscdi=true |