Loading…

Magneto-dielectric signature of Gd3+-substituted PbMg1/3Nb2/3O3 ceramics

The compound lead magnesium niobate (PMN) is a well-known relaxor ferroelectric depicting frequency-dependent dielectric maximum below ~ 250 K. The temperature and field dependences of ac/dc magnetization reveal magneto-dielectric signatures in Gd-doped PMN ceramic. The inverse magnetic susceptibili...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2023-06, Vol.34 (17), p.1349, Article 1349
Main Authors: Pandey, Adityanarayan H., Gupta, S. M., Sahlot, P., Awasthi, A. M., Chandrasekhar Rao, T. V., Nigam, A. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-415e5da23afc84b9eb78372f93ba6abe6cfd64c80f8085f7e6eaa24bb456eeed3
container_end_page
container_issue 17
container_start_page 1349
container_title Journal of materials science. Materials in electronics
container_volume 34
creator Pandey, Adityanarayan H.
Gupta, S. M.
Sahlot, P.
Awasthi, A. M.
Chandrasekhar Rao, T. V.
Nigam, A. K.
description The compound lead magnesium niobate (PMN) is a well-known relaxor ferroelectric depicting frequency-dependent dielectric maximum below ~ 250 K. The temperature and field dependences of ac/dc magnetization reveal magneto-dielectric signatures in Gd-doped PMN ceramic. The inverse magnetic susceptibility shows deviation from linear behavior on cooling, and ac susceptibility shows peak at ~ 125 K, indicating the formation of local magnetic-interacting areas, which are different from polar clusters formed at higher temperatures. However, low-temperature magnetization versus magnetic field (MH) curve described by all the samples is well elucidated by the Brillouin functions suggesting weak deviations due to some magneto-electric interaction. For higher Gd-doped PMN ( x  > 0.05), local interaction between the magnetic polar regions are believed to occur, where both Pb and Mg sites are substituted by Gd ions in the lattice. This result is the first strong evidence of both magnetic and polar interacting regions in this family of materials, where the temperature scales of two phenomena are different. The interaction between the two subsystems via electrostriction and magnetostriction leads to weak magneto-dielectric effect.
doi_str_mv 10.1007/s10854-023-10769-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2826995165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826995165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-415e5da23afc84b9eb78372f93ba6abe6cfd64c80f8085f7e6eaa24bb456eeed3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giMSJTf8cZUQUtUksZQGKzbOc5StUmxXYG_j2BIrExveXce_UOQteU3FFCylmiREuBCeOYklJVmJygCZUlx0Kz91M0IZUssZCMnaOLlLaEECW4nqDl2jYd5B7XLezA59j6IrVNZ_MQoehDsaj5LU6DS7nNQ4a6eHHrhs74s2MzvuGFh2j3rU-X6CzYXYKr3ztFb48Pr_MlXm0WT_P7FfaMkIwFlSBry7gNXgtXgSs1L1mouLPKOlA-1Ep4TYIePwolKLCWCeeEVABQ8ym6OfYeYv8xQMpm2w-xGycN00xVlaRKjhQ7Uj72KUUI5hDbvY2fhhLzbcwcjZnRmPkxZsgY4sdQGuGugfhX_U_qCzuJbcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826995165</pqid></control><display><type>article</type><title>Magneto-dielectric signature of Gd3+-substituted PbMg1/3Nb2/3O3 ceramics</title><source>Springer Nature</source><creator>Pandey, Adityanarayan H. ; Gupta, S. M. ; Sahlot, P. ; Awasthi, A. M. ; Chandrasekhar Rao, T. V. ; Nigam, A. K.</creator><creatorcontrib>Pandey, Adityanarayan H. ; Gupta, S. M. ; Sahlot, P. ; Awasthi, A. M. ; Chandrasekhar Rao, T. V. ; Nigam, A. K.</creatorcontrib><description>The compound lead magnesium niobate (PMN) is a well-known relaxor ferroelectric depicting frequency-dependent dielectric maximum below ~ 250 K. The temperature and field dependences of ac/dc magnetization reveal magneto-dielectric signatures in Gd-doped PMN ceramic. The inverse magnetic susceptibility shows deviation from linear behavior on cooling, and ac susceptibility shows peak at ~ 125 K, indicating the formation of local magnetic-interacting areas, which are different from polar clusters formed at higher temperatures. However, low-temperature magnetization versus magnetic field (MH) curve described by all the samples is well elucidated by the Brillouin functions suggesting weak deviations due to some magneto-electric interaction. For higher Gd-doped PMN ( x  &gt; 0.05), local interaction between the magnetic polar regions are believed to occur, where both Pb and Mg sites are substituted by Gd ions in the lattice. This result is the first strong evidence of both magnetic and polar interacting regions in this family of materials, where the temperature scales of two phenomena are different. The interaction between the two subsystems via electrostriction and magnetostriction leads to weak magneto-dielectric effect.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-10769-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deviation ; Dielectric strength ; Electrostriction ; Ferroelectricity ; Gadolinium ; Low temperature ; Magnesium niobates ; Magnetic permeability ; Magnetization ; Magnetostriction ; Materials Science ; Optical and Electronic Materials ; Polar environments ; Substitutes ; Subsystems ; Temperature ; Temperature scales</subject><ispartof>Journal of materials science. Materials in electronics, 2023-06, Vol.34 (17), p.1349, Article 1349</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-415e5da23afc84b9eb78372f93ba6abe6cfd64c80f8085f7e6eaa24bb456eeed3</cites><orcidid>0000-0001-9155-7135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Pandey, Adityanarayan H.</creatorcontrib><creatorcontrib>Gupta, S. M.</creatorcontrib><creatorcontrib>Sahlot, P.</creatorcontrib><creatorcontrib>Awasthi, A. M.</creatorcontrib><creatorcontrib>Chandrasekhar Rao, T. V.</creatorcontrib><creatorcontrib>Nigam, A. K.</creatorcontrib><title>Magneto-dielectric signature of Gd3+-substituted PbMg1/3Nb2/3O3 ceramics</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The compound lead magnesium niobate (PMN) is a well-known relaxor ferroelectric depicting frequency-dependent dielectric maximum below ~ 250 K. The temperature and field dependences of ac/dc magnetization reveal magneto-dielectric signatures in Gd-doped PMN ceramic. The inverse magnetic susceptibility shows deviation from linear behavior on cooling, and ac susceptibility shows peak at ~ 125 K, indicating the formation of local magnetic-interacting areas, which are different from polar clusters formed at higher temperatures. However, low-temperature magnetization versus magnetic field (MH) curve described by all the samples is well elucidated by the Brillouin functions suggesting weak deviations due to some magneto-electric interaction. For higher Gd-doped PMN ( x  &gt; 0.05), local interaction between the magnetic polar regions are believed to occur, where both Pb and Mg sites are substituted by Gd ions in the lattice. This result is the first strong evidence of both magnetic and polar interacting regions in this family of materials, where the temperature scales of two phenomena are different. The interaction between the two subsystems via electrostriction and magnetostriction leads to weak magneto-dielectric effect.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deviation</subject><subject>Dielectric strength</subject><subject>Electrostriction</subject><subject>Ferroelectricity</subject><subject>Gadolinium</subject><subject>Low temperature</subject><subject>Magnesium niobates</subject><subject>Magnetic permeability</subject><subject>Magnetization</subject><subject>Magnetostriction</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Polar environments</subject><subject>Substitutes</subject><subject>Subsystems</subject><subject>Temperature</subject><subject>Temperature scales</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5giMSJTf8cZUQUtUksZQGKzbOc5StUmxXYG_j2BIrExveXce_UOQteU3FFCylmiREuBCeOYklJVmJygCZUlx0Kz91M0IZUssZCMnaOLlLaEECW4nqDl2jYd5B7XLezA59j6IrVNZ_MQoehDsaj5LU6DS7nNQ4a6eHHrhs74s2MzvuGFh2j3rU-X6CzYXYKr3ztFb48Pr_MlXm0WT_P7FfaMkIwFlSBry7gNXgtXgSs1L1mouLPKOlA-1Ep4TYIePwolKLCWCeeEVABQ8ym6OfYeYv8xQMpm2w-xGycN00xVlaRKjhQ7Uj72KUUI5hDbvY2fhhLzbcwcjZnRmPkxZsgY4sdQGuGugfhX_U_qCzuJbcU</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Pandey, Adityanarayan H.</creator><creator>Gupta, S. M.</creator><creator>Sahlot, P.</creator><creator>Awasthi, A. M.</creator><creator>Chandrasekhar Rao, T. V.</creator><creator>Nigam, A. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-9155-7135</orcidid></search><sort><creationdate>20230601</creationdate><title>Magneto-dielectric signature of Gd3+-substituted PbMg1/3Nb2/3O3 ceramics</title><author>Pandey, Adityanarayan H. ; Gupta, S. M. ; Sahlot, P. ; Awasthi, A. M. ; Chandrasekhar Rao, T. V. ; Nigam, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-415e5da23afc84b9eb78372f93ba6abe6cfd64c80f8085f7e6eaa24bb456eeed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deviation</topic><topic>Dielectric strength</topic><topic>Electrostriction</topic><topic>Ferroelectricity</topic><topic>Gadolinium</topic><topic>Low temperature</topic><topic>Magnesium niobates</topic><topic>Magnetic permeability</topic><topic>Magnetization</topic><topic>Magnetostriction</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Polar environments</topic><topic>Substitutes</topic><topic>Subsystems</topic><topic>Temperature</topic><topic>Temperature scales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Adityanarayan H.</creatorcontrib><creatorcontrib>Gupta, S. M.</creatorcontrib><creatorcontrib>Sahlot, P.</creatorcontrib><creatorcontrib>Awasthi, A. M.</creatorcontrib><creatorcontrib>Chandrasekhar Rao, T. V.</creatorcontrib><creatorcontrib>Nigam, A. K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Adityanarayan H.</au><au>Gupta, S. M.</au><au>Sahlot, P.</au><au>Awasthi, A. M.</au><au>Chandrasekhar Rao, T. V.</au><au>Nigam, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magneto-dielectric signature of Gd3+-substituted PbMg1/3Nb2/3O3 ceramics</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>34</volume><issue>17</issue><spage>1349</spage><pages>1349-</pages><artnum>1349</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The compound lead magnesium niobate (PMN) is a well-known relaxor ferroelectric depicting frequency-dependent dielectric maximum below ~ 250 K. The temperature and field dependences of ac/dc magnetization reveal magneto-dielectric signatures in Gd-doped PMN ceramic. The inverse magnetic susceptibility shows deviation from linear behavior on cooling, and ac susceptibility shows peak at ~ 125 K, indicating the formation of local magnetic-interacting areas, which are different from polar clusters formed at higher temperatures. However, low-temperature magnetization versus magnetic field (MH) curve described by all the samples is well elucidated by the Brillouin functions suggesting weak deviations due to some magneto-electric interaction. For higher Gd-doped PMN ( x  &gt; 0.05), local interaction between the magnetic polar regions are believed to occur, where both Pb and Mg sites are substituted by Gd ions in the lattice. This result is the first strong evidence of both magnetic and polar interacting regions in this family of materials, where the temperature scales of two phenomena are different. The interaction between the two subsystems via electrostriction and magnetostriction leads to weak magneto-dielectric effect.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-10769-0</doi><orcidid>https://orcid.org/0000-0001-9155-7135</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2023-06, Vol.34 (17), p.1349, Article 1349
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2826995165
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Deviation
Dielectric strength
Electrostriction
Ferroelectricity
Gadolinium
Low temperature
Magnesium niobates
Magnetic permeability
Magnetization
Magnetostriction
Materials Science
Optical and Electronic Materials
Polar environments
Substitutes
Subsystems
Temperature
Temperature scales
title Magneto-dielectric signature of Gd3+-substituted PbMg1/3Nb2/3O3 ceramics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magneto-dielectric%20signature%20of%20Gd3+-substituted%20PbMg1/3Nb2/3O3%20ceramics&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Pandey,%20Adityanarayan%20H.&rft.date=2023-06-01&rft.volume=34&rft.issue=17&rft.spage=1349&rft.pages=1349-&rft.artnum=1349&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-10769-0&rft_dat=%3Cproquest_cross%3E2826995165%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-415e5da23afc84b9eb78372f93ba6abe6cfd64c80f8085f7e6eaa24bb456eeed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2826995165&rft_id=info:pmid/&rfr_iscdi=true