Loading…
Optimization of banana crop by-products solvent extraction for the production of bioactive compounds
The aim of this work is the optimization of phenolic compound extraction from three by-products of banana crops (rachis, discarded banana, and banana’s pseudostem pulp), as a way to valorize them through a green extraction process. The influence of the temperature and aqueous ethanol concentration (...
Saved in:
Published in: | Biomass conversion and biorefinery 2023-06, Vol.13 (9), p.7701-7712 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this work is the optimization of phenolic compound extraction from three by-products of banana crops (rachis, discarded banana, and banana’s pseudostem pulp), as a way to valorize them through a green extraction process. The influence of the temperature and aqueous ethanol concentration (Et-OH) on extract properties (total phenol content (TPC) and antioxidant activity) was firstly analyzed. 78 ℃ and ethanol concentrations close to 50% yielded the best results for the three materials. The equations obtained by the response surface methodology gave a satisfactory description of the experimental data, allowing optimizing the extraction conditions. Under optimized conditions, time influence was then assessed, although this parameter seemed not influence results. Among the three by-products, rachis extract (60% Et-OH, 78 ℃, and 30 min) presented the highest TPC (796 mg gallic acid/100 g of dried material) and antioxidant activity (6.51 mg Trolox equivalents/g of dried material), followed by discarded banana, and pseudostem pulp. Under the optimal conditions, experiments were performed at a larger scale, allowing to determine the extraction yields (EY) and to characterize the extracts. The highest EY was obtained for the rachis (26%), but the extract with the highest activity was obtained for discarded banana (50% Et-OH, 78 ℃, and 60 min), which presented a TPC of 27.26 mg/g extract corresponding to 54.59 mg Trolox equivalents/g extract. This study contributes to the valorization of banana crops residues as a source of polyphenolic compounds with bioactive functions that can be extracted under economic extraction conditions.
Graphical abstract |
---|---|
ISSN: | 2190-6815 2190-6823 |
DOI: | 10.1007/s13399-021-01703-7 |