Loading…

Control flow in active inference systems Part II: Tensor networks as general models of control flow

Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In Part I, we introduced the free-energy princip...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on molecular, biological, and multi-scale communications biological, and multi-scale communications, 2023-06, Vol.9 (2), p.1-1
Main Authors: Fields, Chris, Fabrocini, Filippo, Friston, Karl, Glazebrook, James F., Hazan, Hananel, Levin, Michael, Marciano, Antonino
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73
cites cdi_FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73
container_end_page 1
container_issue 2
container_start_page 1
container_title IEEE transactions on molecular, biological, and multi-scale communications
container_volume 9
creator Fields, Chris
Fabrocini, Filippo
Friston, Karl
Glazebrook, James F.
Hazan, Hananel
Levin, Michael
Marciano, Antonino
description Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In Part I, we introduced the free-energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization, and show how the control problem arises in active inference systems. We then review classical and quantum formulations of the FEP, with the former being the classical limit of the latter. In this accompanying Part II, we show that when systems are described as executing active inference driven by the FEP, their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implemented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales.
doi_str_mv 10.1109/TMBMC.2023.3272158
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828006155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10113744</ieee_id><sourcerecordid>2828006155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73</originalsourceid><addsrcrecordid>eNpNkLtOwzAUhi0EElXpCyAGS8wJx3ZiBzaIuFRqBUOZLcc5RilpXOyUqm9PSjt0Ov_wX3Q-Qq4ZpIzB_d1i_jQvUw5cpIIrzvLijIy4UDzhINn5ib4kkxiXAMAkgFByRGzpuz74lrrWb2nTUWP75hcH5TBgZ5HGXexxFemHCT2dTh_oArvoA-2w3_rwHamJ9As7DKalK19jG6l31J7UXpELZ9qIk-Mdk8-X50X5lszeX6fl4yyxIoM-UZAXKKQy0mTG5VVla2ldXcvC1ZhxmauqqJyAzJmKCRhez4QcHK7izEGtxJjcHnrXwf9sMPZ66TehGyY1L3gBA4A8H1z84LLBxxjQ6XVoVibsNAO956n_eeo9T33kOYRuDqEGEU8CjAmVZeIPCtJyKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828006155</pqid></control><display><type>article</type><title>Control flow in active inference systems Part II: Tensor networks as general models of control flow</title><source>IEEE Xplore (Online service)</source><creator>Fields, Chris ; Fabrocini, Filippo ; Friston, Karl ; Glazebrook, James F. ; Hazan, Hananel ; Levin, Michael ; Marciano, Antonino</creator><creatorcontrib>Fields, Chris ; Fabrocini, Filippo ; Friston, Karl ; Glazebrook, James F. ; Hazan, Hananel ; Levin, Michael ; Marciano, Antonino</creatorcontrib><description>Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In Part I, we introduced the free-energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization, and show how the control problem arises in active inference systems. We then review classical and quantum formulations of the FEP, with the former being the classical limit of the latter. In this accompanying Part II, we show that when systems are described as executing active inference driven by the FEP, their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implemented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales.</description><identifier>ISSN: 2372-2061</identifier><identifier>EISSN: 2372-2061</identifier><identifier>DOI: 10.1109/TMBMC.2023.3272158</identifier><identifier>CODEN: ITMBDH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; Bayesian mechanics ; Biological effects ; Control systems ; Dynamic attractor ; Energy sources ; Entropy ; Free energy ; Free-energy principle ; Geometry ; Gravity ; Inference ; Mathematical analysis ; Neural networks ; Quantum entanglement ; Quantum mechanics ; Quantum reference frame ; Scale-free model ; Tensors ; Topological quantum field theory</subject><ispartof>IEEE transactions on molecular, biological, and multi-scale communications, 2023-06, Vol.9 (2), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73</citedby><cites>FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73</cites><orcidid>0000-0002-4812-0744 ; 0000-0001-7984-8909 ; 0000-0003-1446-1628 ; 0000-0001-7292-8084 ; 0000-0001-8335-221X ; 0000-0003-4719-110X ; 0000-0002-6972-1020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10113744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Fields, Chris</creatorcontrib><creatorcontrib>Fabrocini, Filippo</creatorcontrib><creatorcontrib>Friston, Karl</creatorcontrib><creatorcontrib>Glazebrook, James F.</creatorcontrib><creatorcontrib>Hazan, Hananel</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Marciano, Antonino</creatorcontrib><title>Control flow in active inference systems Part II: Tensor networks as general models of control flow</title><title>IEEE transactions on molecular, biological, and multi-scale communications</title><addtitle>TMBMC</addtitle><description>Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In Part I, we introduced the free-energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization, and show how the control problem arises in active inference systems. We then review classical and quantum formulations of the FEP, with the former being the classical limit of the latter. In this accompanying Part II, we show that when systems are described as executing active inference driven by the FEP, their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implemented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales.</description><subject>Active control</subject><subject>Bayesian mechanics</subject><subject>Biological effects</subject><subject>Control systems</subject><subject>Dynamic attractor</subject><subject>Energy sources</subject><subject>Entropy</subject><subject>Free energy</subject><subject>Free-energy principle</subject><subject>Geometry</subject><subject>Gravity</subject><subject>Inference</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Quantum reference frame</subject><subject>Scale-free model</subject><subject>Tensors</subject><subject>Topological quantum field theory</subject><issn>2372-2061</issn><issn>2372-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOwzAUhi0EElXpCyAGS8wJx3ZiBzaIuFRqBUOZLcc5RilpXOyUqm9PSjt0Ov_wX3Q-Qq4ZpIzB_d1i_jQvUw5cpIIrzvLijIy4UDzhINn5ib4kkxiXAMAkgFByRGzpuz74lrrWb2nTUWP75hcH5TBgZ5HGXexxFemHCT2dTh_oArvoA-2w3_rwHamJ9As7DKalK19jG6l31J7UXpELZ9qIk-Mdk8-X50X5lszeX6fl4yyxIoM-UZAXKKQy0mTG5VVla2ldXcvC1ZhxmauqqJyAzJmKCRhez4QcHK7izEGtxJjcHnrXwf9sMPZ66TehGyY1L3gBA4A8H1z84LLBxxjQ6XVoVibsNAO956n_eeo9T33kOYRuDqEGEU8CjAmVZeIPCtJyKA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Fields, Chris</creator><creator>Fabrocini, Filippo</creator><creator>Friston, Karl</creator><creator>Glazebrook, James F.</creator><creator>Hazan, Hananel</creator><creator>Levin, Michael</creator><creator>Marciano, Antonino</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4812-0744</orcidid><orcidid>https://orcid.org/0000-0001-7984-8909</orcidid><orcidid>https://orcid.org/0000-0003-1446-1628</orcidid><orcidid>https://orcid.org/0000-0001-7292-8084</orcidid><orcidid>https://orcid.org/0000-0001-8335-221X</orcidid><orcidid>https://orcid.org/0000-0003-4719-110X</orcidid><orcidid>https://orcid.org/0000-0002-6972-1020</orcidid></search><sort><creationdate>20230601</creationdate><title>Control flow in active inference systems Part II: Tensor networks as general models of control flow</title><author>Fields, Chris ; Fabrocini, Filippo ; Friston, Karl ; Glazebrook, James F. ; Hazan, Hananel ; Levin, Michael ; Marciano, Antonino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active control</topic><topic>Bayesian mechanics</topic><topic>Biological effects</topic><topic>Control systems</topic><topic>Dynamic attractor</topic><topic>Energy sources</topic><topic>Entropy</topic><topic>Free energy</topic><topic>Free-energy principle</topic><topic>Geometry</topic><topic>Gravity</topic><topic>Inference</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Quantum reference frame</topic><topic>Scale-free model</topic><topic>Tensors</topic><topic>Topological quantum field theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fields, Chris</creatorcontrib><creatorcontrib>Fabrocini, Filippo</creatorcontrib><creatorcontrib>Friston, Karl</creatorcontrib><creatorcontrib>Glazebrook, James F.</creatorcontrib><creatorcontrib>Hazan, Hananel</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Marciano, Antonino</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fields, Chris</au><au>Fabrocini, Filippo</au><au>Friston, Karl</au><au>Glazebrook, James F.</au><au>Hazan, Hananel</au><au>Levin, Michael</au><au>Marciano, Antonino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control flow in active inference systems Part II: Tensor networks as general models of control flow</atitle><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle><stitle>TMBMC</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>9</volume><issue>2</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2372-2061</issn><eissn>2372-2061</eissn><coden>ITMBDH</coden><abstract>Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In Part I, we introduced the free-energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization, and show how the control problem arises in active inference systems. We then review classical and quantum formulations of the FEP, with the former being the classical limit of the latter. In this accompanying Part II, we show that when systems are described as executing active inference driven by the FEP, their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implemented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMBMC.2023.3272158</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4812-0744</orcidid><orcidid>https://orcid.org/0000-0001-7984-8909</orcidid><orcidid>https://orcid.org/0000-0003-1446-1628</orcidid><orcidid>https://orcid.org/0000-0001-7292-8084</orcidid><orcidid>https://orcid.org/0000-0001-8335-221X</orcidid><orcidid>https://orcid.org/0000-0003-4719-110X</orcidid><orcidid>https://orcid.org/0000-0002-6972-1020</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2372-2061
ispartof IEEE transactions on molecular, biological, and multi-scale communications, 2023-06, Vol.9 (2), p.1-1
issn 2372-2061
2372-2061
language eng
recordid cdi_proquest_journals_2828006155
source IEEE Xplore (Online service)
subjects Active control
Bayesian mechanics
Biological effects
Control systems
Dynamic attractor
Energy sources
Entropy
Free energy
Free-energy principle
Geometry
Gravity
Inference
Mathematical analysis
Neural networks
Quantum entanglement
Quantum mechanics
Quantum reference frame
Scale-free model
Tensors
Topological quantum field theory
title Control flow in active inference systems Part II: Tensor networks as general models of control flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20flow%20in%20active%20inference%20systems%20Part%20II:%20Tensor%20networks%20as%20general%20models%20of%20control%20flow&rft.jtitle=IEEE%20transactions%20on%20molecular,%20biological,%20and%20multi-scale%20communications&rft.au=Fields,%20Chris&rft.date=2023-06-01&rft.volume=9&rft.issue=2&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2372-2061&rft.eissn=2372-2061&rft.coden=ITMBDH&rft_id=info:doi/10.1109/TMBMC.2023.3272158&rft_dat=%3Cproquest_cross%3E2828006155%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828006155&rft_id=info:pmid/&rft_ieee_id=10113744&rfr_iscdi=true