Loading…
Control flow in active inference systems Part II: Tensor networks as general models of control flow
Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In Part I, we introduced the free-energy princip...
Saved in:
Published in: | IEEE transactions on molecular, biological, and multi-scale communications biological, and multi-scale communications, 2023-06, Vol.9 (2), p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73 |
container_end_page | 1 |
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE transactions on molecular, biological, and multi-scale communications |
container_volume | 9 |
creator | Fields, Chris Fabrocini, Filippo Friston, Karl Glazebrook, James F. Hazan, Hananel Levin, Michael Marciano, Antonino |
description | Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In Part I, we introduced the free-energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization, and show how the control problem arises in active inference systems. We then review classical and quantum formulations of the FEP, with the former being the classical limit of the latter. In this accompanying Part II, we show that when systems are described as executing active inference driven by the FEP, their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implemented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales. |
doi_str_mv | 10.1109/TMBMC.2023.3272158 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828006155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10113744</ieee_id><sourcerecordid>2828006155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73</originalsourceid><addsrcrecordid>eNpNkLtOwzAUhi0EElXpCyAGS8wJx3ZiBzaIuFRqBUOZLcc5RilpXOyUqm9PSjt0Ov_wX3Q-Qq4ZpIzB_d1i_jQvUw5cpIIrzvLijIy4UDzhINn5ib4kkxiXAMAkgFByRGzpuz74lrrWb2nTUWP75hcH5TBgZ5HGXexxFemHCT2dTh_oArvoA-2w3_rwHamJ9As7DKalK19jG6l31J7UXpELZ9qIk-Mdk8-X50X5lszeX6fl4yyxIoM-UZAXKKQy0mTG5VVla2ldXcvC1ZhxmauqqJyAzJmKCRhez4QcHK7izEGtxJjcHnrXwf9sMPZ66TehGyY1L3gBA4A8H1z84LLBxxjQ6XVoVibsNAO956n_eeo9T33kOYRuDqEGEU8CjAmVZeIPCtJyKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828006155</pqid></control><display><type>article</type><title>Control flow in active inference systems Part II: Tensor networks as general models of control flow</title><source>IEEE Xplore (Online service)</source><creator>Fields, Chris ; Fabrocini, Filippo ; Friston, Karl ; Glazebrook, James F. ; Hazan, Hananel ; Levin, Michael ; Marciano, Antonino</creator><creatorcontrib>Fields, Chris ; Fabrocini, Filippo ; Friston, Karl ; Glazebrook, James F. ; Hazan, Hananel ; Levin, Michael ; Marciano, Antonino</creatorcontrib><description>Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In Part I, we introduced the free-energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization, and show how the control problem arises in active inference systems. We then review classical and quantum formulations of the FEP, with the former being the classical limit of the latter. In this accompanying Part II, we show that when systems are described as executing active inference driven by the FEP, their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implemented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales.</description><identifier>ISSN: 2372-2061</identifier><identifier>EISSN: 2372-2061</identifier><identifier>DOI: 10.1109/TMBMC.2023.3272158</identifier><identifier>CODEN: ITMBDH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; Bayesian mechanics ; Biological effects ; Control systems ; Dynamic attractor ; Energy sources ; Entropy ; Free energy ; Free-energy principle ; Geometry ; Gravity ; Inference ; Mathematical analysis ; Neural networks ; Quantum entanglement ; Quantum mechanics ; Quantum reference frame ; Scale-free model ; Tensors ; Topological quantum field theory</subject><ispartof>IEEE transactions on molecular, biological, and multi-scale communications, 2023-06, Vol.9 (2), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73</citedby><cites>FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73</cites><orcidid>0000-0002-4812-0744 ; 0000-0001-7984-8909 ; 0000-0003-1446-1628 ; 0000-0001-7292-8084 ; 0000-0001-8335-221X ; 0000-0003-4719-110X ; 0000-0002-6972-1020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10113744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Fields, Chris</creatorcontrib><creatorcontrib>Fabrocini, Filippo</creatorcontrib><creatorcontrib>Friston, Karl</creatorcontrib><creatorcontrib>Glazebrook, James F.</creatorcontrib><creatorcontrib>Hazan, Hananel</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Marciano, Antonino</creatorcontrib><title>Control flow in active inference systems Part II: Tensor networks as general models of control flow</title><title>IEEE transactions on molecular, biological, and multi-scale communications</title><addtitle>TMBMC</addtitle><description>Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In Part I, we introduced the free-energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization, and show how the control problem arises in active inference systems. We then review classical and quantum formulations of the FEP, with the former being the classical limit of the latter. In this accompanying Part II, we show that when systems are described as executing active inference driven by the FEP, their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implemented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales.</description><subject>Active control</subject><subject>Bayesian mechanics</subject><subject>Biological effects</subject><subject>Control systems</subject><subject>Dynamic attractor</subject><subject>Energy sources</subject><subject>Entropy</subject><subject>Free energy</subject><subject>Free-energy principle</subject><subject>Geometry</subject><subject>Gravity</subject><subject>Inference</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Quantum reference frame</subject><subject>Scale-free model</subject><subject>Tensors</subject><subject>Topological quantum field theory</subject><issn>2372-2061</issn><issn>2372-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOwzAUhi0EElXpCyAGS8wJx3ZiBzaIuFRqBUOZLcc5RilpXOyUqm9PSjt0Ov_wX3Q-Qq4ZpIzB_d1i_jQvUw5cpIIrzvLijIy4UDzhINn5ib4kkxiXAMAkgFByRGzpuz74lrrWb2nTUWP75hcH5TBgZ5HGXexxFemHCT2dTh_oArvoA-2w3_rwHamJ9As7DKalK19jG6l31J7UXpELZ9qIk-Mdk8-X50X5lszeX6fl4yyxIoM-UZAXKKQy0mTG5VVla2ldXcvC1ZhxmauqqJyAzJmKCRhez4QcHK7izEGtxJjcHnrXwf9sMPZ66TehGyY1L3gBA4A8H1z84LLBxxjQ6XVoVibsNAO956n_eeo9T33kOYRuDqEGEU8CjAmVZeIPCtJyKA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Fields, Chris</creator><creator>Fabrocini, Filippo</creator><creator>Friston, Karl</creator><creator>Glazebrook, James F.</creator><creator>Hazan, Hananel</creator><creator>Levin, Michael</creator><creator>Marciano, Antonino</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4812-0744</orcidid><orcidid>https://orcid.org/0000-0001-7984-8909</orcidid><orcidid>https://orcid.org/0000-0003-1446-1628</orcidid><orcidid>https://orcid.org/0000-0001-7292-8084</orcidid><orcidid>https://orcid.org/0000-0001-8335-221X</orcidid><orcidid>https://orcid.org/0000-0003-4719-110X</orcidid><orcidid>https://orcid.org/0000-0002-6972-1020</orcidid></search><sort><creationdate>20230601</creationdate><title>Control flow in active inference systems Part II: Tensor networks as general models of control flow</title><author>Fields, Chris ; Fabrocini, Filippo ; Friston, Karl ; Glazebrook, James F. ; Hazan, Hananel ; Levin, Michael ; Marciano, Antonino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active control</topic><topic>Bayesian mechanics</topic><topic>Biological effects</topic><topic>Control systems</topic><topic>Dynamic attractor</topic><topic>Energy sources</topic><topic>Entropy</topic><topic>Free energy</topic><topic>Free-energy principle</topic><topic>Geometry</topic><topic>Gravity</topic><topic>Inference</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Quantum reference frame</topic><topic>Scale-free model</topic><topic>Tensors</topic><topic>Topological quantum field theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fields, Chris</creatorcontrib><creatorcontrib>Fabrocini, Filippo</creatorcontrib><creatorcontrib>Friston, Karl</creatorcontrib><creatorcontrib>Glazebrook, James F.</creatorcontrib><creatorcontrib>Hazan, Hananel</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Marciano, Antonino</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fields, Chris</au><au>Fabrocini, Filippo</au><au>Friston, Karl</au><au>Glazebrook, James F.</au><au>Hazan, Hananel</au><au>Levin, Michael</au><au>Marciano, Antonino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control flow in active inference systems Part II: Tensor networks as general models of control flow</atitle><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle><stitle>TMBMC</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>9</volume><issue>2</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2372-2061</issn><eissn>2372-2061</eissn><coden>ITMBDH</coden><abstract>Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In Part I, we introduced the free-energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization, and show how the control problem arises in active inference systems. We then review classical and quantum formulations of the FEP, with the former being the classical limit of the latter. In this accompanying Part II, we show that when systems are described as executing active inference driven by the FEP, their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implemented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMBMC.2023.3272158</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4812-0744</orcidid><orcidid>https://orcid.org/0000-0001-7984-8909</orcidid><orcidid>https://orcid.org/0000-0003-1446-1628</orcidid><orcidid>https://orcid.org/0000-0001-7292-8084</orcidid><orcidid>https://orcid.org/0000-0001-8335-221X</orcidid><orcidid>https://orcid.org/0000-0003-4719-110X</orcidid><orcidid>https://orcid.org/0000-0002-6972-1020</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2372-2061 |
ispartof | IEEE transactions on molecular, biological, and multi-scale communications, 2023-06, Vol.9 (2), p.1-1 |
issn | 2372-2061 2372-2061 |
language | eng |
recordid | cdi_proquest_journals_2828006155 |
source | IEEE Xplore (Online service) |
subjects | Active control Bayesian mechanics Biological effects Control systems Dynamic attractor Energy sources Entropy Free energy Free-energy principle Geometry Gravity Inference Mathematical analysis Neural networks Quantum entanglement Quantum mechanics Quantum reference frame Scale-free model Tensors Topological quantum field theory |
title | Control flow in active inference systems Part II: Tensor networks as general models of control flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20flow%20in%20active%20inference%20systems%20Part%20II:%20Tensor%20networks%20as%20general%20models%20of%20control%20flow&rft.jtitle=IEEE%20transactions%20on%20molecular,%20biological,%20and%20multi-scale%20communications&rft.au=Fields,%20Chris&rft.date=2023-06-01&rft.volume=9&rft.issue=2&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2372-2061&rft.eissn=2372-2061&rft.coden=ITMBDH&rft_id=info:doi/10.1109/TMBMC.2023.3272158&rft_dat=%3Cproquest_cross%3E2828006155%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-7058e367a6a4af5bbcd6cfdd68fde42657b8bf304fab1301104366cffb21f0d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828006155&rft_id=info:pmid/&rft_ieee_id=10113744&rfr_iscdi=true |