Loading…

Fast and Accurate Single-Snapshot DOA Estimation: Iterative Interpolated Approaches

Estimating the Direction of Arrival (DOA) of a single source signal from a single observation of an array data still plays an important part in practical application scenarios. To address the problem, this letter proposes two iterative, fast and accurate approaches namely Q-Shift based DOA Estimatio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1
Main Authors: Liu, Yicen, Zhao, Peiyan, Yao, Denghui, Liu, Bo, Zhang, Junning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-7f71416ee7c074dc0bc6b018663b357e4f5ff8acde756bf3f03abb3b869ad3d73
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 20
creator Liu, Yicen
Zhao, Peiyan
Yao, Denghui
Liu, Bo
Zhang, Junning
description Estimating the Direction of Arrival (DOA) of a single source signal from a single observation of an array data still plays an important part in practical application scenarios. To address the problem, this letter proposes two iterative, fast and accurate approaches namely Q-Shift based DOA Estimation Algorithm (QS-DOAEA) and Tradeoff between A&M and Q-Shift based DOA Estimation Algorithm (TAQ-DOAEA). QS-DOAEA adopts the interpolation of shifted DFT coefficients to iteratively obtain the near-optimal estimation. TAQ-DOAEA employs the error function by simultaneously mixing the q -shifted and half-shifted DFT coefficients, which only requires two iterations. Numerical results reveal that QS-DOAEA achieves significant improvement in terms of estimation accuracy and TAQ-DOAEA expedites the convergence. The proposed estimation algorithms demonstrate that they have an asymptotic variance that is at least 1.0013 times asymptotic Cramér-Rao bound (ACRB), and provide more than 80× reduction in the computational cost, compared to the baseline method. All our proposed algorithms and code are available at https://github.com/jn-z/.
doi_str_mv 10.1109/LGRS.2023.3283288
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828006193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10144742</ieee_id><sourcerecordid>2828006193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-7f71416ee7c074dc0bc6b018663b357e4f5ff8acde756bf3f03abb3b869ad3d73</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKsfQPCw4Hlr_if1VrSthULBVfAWstmJ3VJ3100q-O3N0h6EgXmH35vHPIRuCZ4QgqcP6-VrMaGYsgmjOo0-QyMihM6xUOR80FzkYqo_LtFVCDuMKddajVCxsCFmtqmymXOH3kbIirr53ENeNLYL2zZmz5tZNg-x_rKxbpvHbBUhcfUPZKsmya7dJ1fyd13fWreFcI0uvN0HuDntMXpfzN-eXvL1Zrl6mq1zR7mMufKKcCIBlMOKVw6XTpaYaClZyYQC7oX32roKlJClZx4zW5as1HJqK1YpNkb3x7sp-PsAIZpde-ibFGmophpjSaYsUeRIub4NoQdvuj790v8ags3QnRm6M0N35tRd8twdPTUA_OMJ54pT9gc-rGtZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828006193</pqid></control><display><type>article</type><title>Fast and Accurate Single-Snapshot DOA Estimation: Iterative Interpolated Approaches</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Yicen ; Zhao, Peiyan ; Yao, Denghui ; Liu, Bo ; Zhang, Junning</creator><creatorcontrib>Liu, Yicen ; Zhao, Peiyan ; Yao, Denghui ; Liu, Bo ; Zhang, Junning</creatorcontrib><description>Estimating the Direction of Arrival (DOA) of a single source signal from a single observation of an array data still plays an important part in practical application scenarios. To address the problem, this letter proposes two iterative, fast and accurate approaches namely Q-Shift based DOA Estimation Algorithm (QS-DOAEA) and Tradeoff between A&amp;M and Q-Shift based DOA Estimation Algorithm (TAQ-DOAEA). QS-DOAEA adopts the interpolation of shifted DFT coefficients to iteratively obtain the near-optimal estimation. TAQ-DOAEA employs the error function by simultaneously mixing the q -shifted and half-shifted DFT coefficients, which only requires two iterations. Numerical results reveal that QS-DOAEA achieves significant improvement in terms of estimation accuracy and TAQ-DOAEA expedites the convergence. The proposed estimation algorithms demonstrate that they have an asymptotic variance that is at least 1.0013 times asymptotic Cramér-Rao bound (ACRB), and provide more than 80× reduction in the computational cost, compared to the baseline method. All our proposed algorithms and code are available at https://github.com/jn-z/.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3283288</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Asymptotic properties ; Coefficients ; Cramer-Rao bounds ; Cramér-Rao bound ; DFT interpolation ; Direction of arrival ; direction of arrival (DOA) estimation ; Direction-of-arrival estimation ; Discrete Fourier transforms ; Error functions ; Estimation ; Estimation accuracy ; Fourier transforms ; Interpolation ; Iterative algorithms ; Iterative methods ; Radar signal processing ; Signal processing algorithms ; Superresolution</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-7f71416ee7c074dc0bc6b018663b357e4f5ff8acde756bf3f03abb3b869ad3d73</cites><orcidid>0000-0002-7720-6854 ; 0000-0002-4349-3568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10144742$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liu, Yicen</creatorcontrib><creatorcontrib>Zhao, Peiyan</creatorcontrib><creatorcontrib>Yao, Denghui</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Zhang, Junning</creatorcontrib><title>Fast and Accurate Single-Snapshot DOA Estimation: Iterative Interpolated Approaches</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Estimating the Direction of Arrival (DOA) of a single source signal from a single observation of an array data still plays an important part in practical application scenarios. To address the problem, this letter proposes two iterative, fast and accurate approaches namely Q-Shift based DOA Estimation Algorithm (QS-DOAEA) and Tradeoff between A&amp;M and Q-Shift based DOA Estimation Algorithm (TAQ-DOAEA). QS-DOAEA adopts the interpolation of shifted DFT coefficients to iteratively obtain the near-optimal estimation. TAQ-DOAEA employs the error function by simultaneously mixing the q -shifted and half-shifted DFT coefficients, which only requires two iterations. Numerical results reveal that QS-DOAEA achieves significant improvement in terms of estimation accuracy and TAQ-DOAEA expedites the convergence. The proposed estimation algorithms demonstrate that they have an asymptotic variance that is at least 1.0013 times asymptotic Cramér-Rao bound (ACRB), and provide more than 80× reduction in the computational cost, compared to the baseline method. All our proposed algorithms and code are available at https://github.com/jn-z/.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Coefficients</subject><subject>Cramer-Rao bounds</subject><subject>Cramér-Rao bound</subject><subject>DFT interpolation</subject><subject>Direction of arrival</subject><subject>direction of arrival (DOA) estimation</subject><subject>Direction-of-arrival estimation</subject><subject>Discrete Fourier transforms</subject><subject>Error functions</subject><subject>Estimation</subject><subject>Estimation accuracy</subject><subject>Fourier transforms</subject><subject>Interpolation</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Radar signal processing</subject><subject>Signal processing algorithms</subject><subject>Superresolution</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWKsfQPCw4Hlr_if1VrSthULBVfAWstmJ3VJ3100q-O3N0h6EgXmH35vHPIRuCZ4QgqcP6-VrMaGYsgmjOo0-QyMihM6xUOR80FzkYqo_LtFVCDuMKddajVCxsCFmtqmymXOH3kbIirr53ENeNLYL2zZmz5tZNg-x_rKxbpvHbBUhcfUPZKsmya7dJ1fyd13fWreFcI0uvN0HuDntMXpfzN-eXvL1Zrl6mq1zR7mMufKKcCIBlMOKVw6XTpaYaClZyYQC7oX32roKlJClZx4zW5as1HJqK1YpNkb3x7sp-PsAIZpde-ibFGmophpjSaYsUeRIub4NoQdvuj790v8ags3QnRm6M0N35tRd8twdPTUA_OMJ54pT9gc-rGtZ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Yicen</creator><creator>Zhao, Peiyan</creator><creator>Yao, Denghui</creator><creator>Liu, Bo</creator><creator>Zhang, Junning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7720-6854</orcidid><orcidid>https://orcid.org/0000-0002-4349-3568</orcidid></search><sort><creationdate>20230101</creationdate><title>Fast and Accurate Single-Snapshot DOA Estimation: Iterative Interpolated Approaches</title><author>Liu, Yicen ; Zhao, Peiyan ; Yao, Denghui ; Liu, Bo ; Zhang, Junning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-7f71416ee7c074dc0bc6b018663b357e4f5ff8acde756bf3f03abb3b869ad3d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Coefficients</topic><topic>Cramer-Rao bounds</topic><topic>Cramér-Rao bound</topic><topic>DFT interpolation</topic><topic>Direction of arrival</topic><topic>direction of arrival (DOA) estimation</topic><topic>Direction-of-arrival estimation</topic><topic>Discrete Fourier transforms</topic><topic>Error functions</topic><topic>Estimation</topic><topic>Estimation accuracy</topic><topic>Fourier transforms</topic><topic>Interpolation</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Radar signal processing</topic><topic>Signal processing algorithms</topic><topic>Superresolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yicen</creatorcontrib><creatorcontrib>Zhao, Peiyan</creatorcontrib><creatorcontrib>Yao, Denghui</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Zhang, Junning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yicen</au><au>Zhao, Peiyan</au><au>Yao, Denghui</au><au>Liu, Bo</au><au>Zhang, Junning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Accurate Single-Snapshot DOA Estimation: Iterative Interpolated Approaches</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Estimating the Direction of Arrival (DOA) of a single source signal from a single observation of an array data still plays an important part in practical application scenarios. To address the problem, this letter proposes two iterative, fast and accurate approaches namely Q-Shift based DOA Estimation Algorithm (QS-DOAEA) and Tradeoff between A&amp;M and Q-Shift based DOA Estimation Algorithm (TAQ-DOAEA). QS-DOAEA adopts the interpolation of shifted DFT coefficients to iteratively obtain the near-optimal estimation. TAQ-DOAEA employs the error function by simultaneously mixing the q -shifted and half-shifted DFT coefficients, which only requires two iterations. Numerical results reveal that QS-DOAEA achieves significant improvement in terms of estimation accuracy and TAQ-DOAEA expedites the convergence. The proposed estimation algorithms demonstrate that they have an asymptotic variance that is at least 1.0013 times asymptotic Cramér-Rao bound (ACRB), and provide more than 80× reduction in the computational cost, compared to the baseline method. All our proposed algorithms and code are available at https://github.com/jn-z/.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3283288</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7720-6854</orcidid><orcidid>https://orcid.org/0000-0002-4349-3568</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2828006193
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Asymptotic properties
Coefficients
Cramer-Rao bounds
Cramér-Rao bound
DFT interpolation
Direction of arrival
direction of arrival (DOA) estimation
Direction-of-arrival estimation
Discrete Fourier transforms
Error functions
Estimation
Estimation accuracy
Fourier transforms
Interpolation
Iterative algorithms
Iterative methods
Radar signal processing
Signal processing algorithms
Superresolution
title Fast and Accurate Single-Snapshot DOA Estimation: Iterative Interpolated Approaches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Accurate%20Single-Snapshot%20DOA%20Estimation:%20Iterative%20Interpolated%20Approaches&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Liu,%20Yicen&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3283288&rft_dat=%3Cproquest_cross%3E2828006193%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-7f71416ee7c074dc0bc6b018663b357e4f5ff8acde756bf3f03abb3b869ad3d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828006193&rft_id=info:pmid/&rft_ieee_id=10144742&rfr_iscdi=true