Loading…
Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation
Hydrogels have obtained extensive attention in oil–water separation due to their high hydrophilicity and weak viscosity. However, most hydrogels have limited applications due to their subpar mechanical qualities. The interpenetrating network gives the hydrogel material high mechanical properties due...
Saved in:
Published in: | Journal of applied polymer science 2023-08, Vol.140 (29), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93 |
container_end_page | n/a |
container_issue | 29 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 140 |
creator | Wu, Jiangqin Lv, Zaosheng Lei, Yang Huang, Yanfen Liu, Xuegang |
description | Hydrogels have obtained extensive attention in oil–water separation due to their high hydrophilicity and weak viscosity. However, most hydrogels have limited applications due to their subpar mechanical qualities. The interpenetrating network gives the hydrogel material high mechanical properties due to the presence of physical and chemical crosslinking. Hence, polyvinyl alcohol/chitosan/polyacrylamide interpenetrating polymer network hydrogel (HAPC‐Gel) was created in this study. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the oil contact angles about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation. Furthermore, the water could be divided from the oil‐in‐water emulsion. These results indicate that HAPC‐Gel composites have promising applications in oil–water separation.
In this article, PVA/CS/PAM IPN hydrogel (HAPC‐Gel) was fabricated by two‐step free radical polymerization. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the OCAs about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation. |
doi_str_mv | 10.1002/app.54058 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828139225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828139225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIa7txEi9RxZ9UiS5gxcIakknrktrBTlVlxx24ISfBJWxZjTTzvTdPj5BLziacMTGFtp3IlMniiIw4U3mSZqI4JqN440mhlDwlZyFsGONcsmxEXudr07kAlhrboW_RYuehM3ZFW9f0W_Q0bvbOv9N1X3m3wibQ2nnqTPP9-bWHKKJgK4rbXROMszRgCwcHZ8_JSQ1NwIu_OSYvd7fP84dk8XT_OL9ZJKVQeZFgnkss0yoGklhXeZVyASXPIEclWI1SSZFKBACZKf5WZqBA5CVDmCngtZqNydXg23r3scPQ6Y3beRtfalGIgs-UEDJS1wNVeheCx1q33mzB95ozfehOx-70b3eRnQ7s3jTY_w_qm-VyUPwA9VNzgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828139225</pqid></control><display><type>article</type><title>Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wu, Jiangqin ; Lv, Zaosheng ; Lei, Yang ; Huang, Yanfen ; Liu, Xuegang</creator><creatorcontrib>Wu, Jiangqin ; Lv, Zaosheng ; Lei, Yang ; Huang, Yanfen ; Liu, Xuegang</creatorcontrib><description>Hydrogels have obtained extensive attention in oil–water separation due to their high hydrophilicity and weak viscosity. However, most hydrogels have limited applications due to their subpar mechanical qualities. The interpenetrating network gives the hydrogel material high mechanical properties due to the presence of physical and chemical crosslinking. Hence, polyvinyl alcohol/chitosan/polyacrylamide interpenetrating polymer network hydrogel (HAPC‐Gel) was created in this study. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the oil contact angles about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation. Furthermore, the water could be divided from the oil‐in‐water emulsion. These results indicate that HAPC‐Gel composites have promising applications in oil–water separation.
In this article, PVA/CS/PAM IPN hydrogel (HAPC‐Gel) was fabricated by two‐step free radical polymerization. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the OCAs about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.54058</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>chemical stabilization ; Chitosan ; Contact angle ; Crosslinking ; Hydrogels ; Interpenetrating networks ; IPN hydrogels ; Materials science ; Mechanical properties ; oil–water separation ; Polyacrylamide ; Polymers ; Polyvinyl alcohol ; Separation ; super‐hydrophilicity</subject><ispartof>Journal of applied polymer science, 2023-08, Vol.140 (29), p.n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93</citedby><cites>FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93</cites><orcidid>0000-0002-4835-8314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Jiangqin</creatorcontrib><creatorcontrib>Lv, Zaosheng</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Huang, Yanfen</creatorcontrib><creatorcontrib>Liu, Xuegang</creatorcontrib><title>Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation</title><title>Journal of applied polymer science</title><description>Hydrogels have obtained extensive attention in oil–water separation due to their high hydrophilicity and weak viscosity. However, most hydrogels have limited applications due to their subpar mechanical qualities. The interpenetrating network gives the hydrogel material high mechanical properties due to the presence of physical and chemical crosslinking. Hence, polyvinyl alcohol/chitosan/polyacrylamide interpenetrating polymer network hydrogel (HAPC‐Gel) was created in this study. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the oil contact angles about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation. Furthermore, the water could be divided from the oil‐in‐water emulsion. These results indicate that HAPC‐Gel composites have promising applications in oil–water separation.
In this article, PVA/CS/PAM IPN hydrogel (HAPC‐Gel) was fabricated by two‐step free radical polymerization. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the OCAs about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation.</description><subject>chemical stabilization</subject><subject>Chitosan</subject><subject>Contact angle</subject><subject>Crosslinking</subject><subject>Hydrogels</subject><subject>Interpenetrating networks</subject><subject>IPN hydrogels</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>oil–water separation</subject><subject>Polyacrylamide</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Separation</subject><subject>super‐hydrophilicity</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIa7txEi9RxZ9UiS5gxcIakknrktrBTlVlxx24ISfBJWxZjTTzvTdPj5BLziacMTGFtp3IlMniiIw4U3mSZqI4JqN440mhlDwlZyFsGONcsmxEXudr07kAlhrboW_RYuehM3ZFW9f0W_Q0bvbOv9N1X3m3wibQ2nnqTPP9-bWHKKJgK4rbXROMszRgCwcHZ8_JSQ1NwIu_OSYvd7fP84dk8XT_OL9ZJKVQeZFgnkss0yoGklhXeZVyASXPIEclWI1SSZFKBACZKf5WZqBA5CVDmCngtZqNydXg23r3scPQ6Y3beRtfalGIgs-UEDJS1wNVeheCx1q33mzB95ozfehOx-70b3eRnQ7s3jTY_w_qm-VyUPwA9VNzgA</recordid><startdate>20230805</startdate><enddate>20230805</enddate><creator>Wu, Jiangqin</creator><creator>Lv, Zaosheng</creator><creator>Lei, Yang</creator><creator>Huang, Yanfen</creator><creator>Liu, Xuegang</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4835-8314</orcidid></search><sort><creationdate>20230805</creationdate><title>Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation</title><author>Wu, Jiangqin ; Lv, Zaosheng ; Lei, Yang ; Huang, Yanfen ; Liu, Xuegang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>chemical stabilization</topic><topic>Chitosan</topic><topic>Contact angle</topic><topic>Crosslinking</topic><topic>Hydrogels</topic><topic>Interpenetrating networks</topic><topic>IPN hydrogels</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>oil–water separation</topic><topic>Polyacrylamide</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Separation</topic><topic>super‐hydrophilicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jiangqin</creatorcontrib><creatorcontrib>Lv, Zaosheng</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Huang, Yanfen</creatorcontrib><creatorcontrib>Liu, Xuegang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jiangqin</au><au>Lv, Zaosheng</au><au>Lei, Yang</au><au>Huang, Yanfen</au><au>Liu, Xuegang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation</atitle><jtitle>Journal of applied polymer science</jtitle><date>2023-08-05</date><risdate>2023</risdate><volume>140</volume><issue>29</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Hydrogels have obtained extensive attention in oil–water separation due to their high hydrophilicity and weak viscosity. However, most hydrogels have limited applications due to their subpar mechanical qualities. The interpenetrating network gives the hydrogel material high mechanical properties due to the presence of physical and chemical crosslinking. Hence, polyvinyl alcohol/chitosan/polyacrylamide interpenetrating polymer network hydrogel (HAPC‐Gel) was created in this study. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the oil contact angles about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation. Furthermore, the water could be divided from the oil‐in‐water emulsion. These results indicate that HAPC‐Gel composites have promising applications in oil–water separation.
In this article, PVA/CS/PAM IPN hydrogel (HAPC‐Gel) was fabricated by two‐step free radical polymerization. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the OCAs about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.54058</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4835-8314</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2023-08, Vol.140 (29), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2828139225 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | chemical stabilization Chitosan Contact angle Crosslinking Hydrogels Interpenetrating networks IPN hydrogels Materials science Mechanical properties oil–water separation Polyacrylamide Polymers Polyvinyl alcohol Separation super‐hydrophilicity |
title | Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan%20interpenetrating%20polymer%20network%20hydrogels%20for%20oil%E2%80%93water%20and%20emulsion%20separation&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Wu,%20Jiangqin&rft.date=2023-08-05&rft.volume=140&rft.issue=29&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.54058&rft_dat=%3Cproquest_cross%3E2828139225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828139225&rft_id=info:pmid/&rfr_iscdi=true |