Loading…

Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation

Hydrogels have obtained extensive attention in oil–water separation due to their high hydrophilicity and weak viscosity. However, most hydrogels have limited applications due to their subpar mechanical qualities. The interpenetrating network gives the hydrogel material high mechanical properties due...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2023-08, Vol.140 (29), p.n/a
Main Authors: Wu, Jiangqin, Lv, Zaosheng, Lei, Yang, Huang, Yanfen, Liu, Xuegang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93
cites cdi_FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93
container_end_page n/a
container_issue 29
container_start_page
container_title Journal of applied polymer science
container_volume 140
creator Wu, Jiangqin
Lv, Zaosheng
Lei, Yang
Huang, Yanfen
Liu, Xuegang
description Hydrogels have obtained extensive attention in oil–water separation due to their high hydrophilicity and weak viscosity. However, most hydrogels have limited applications due to their subpar mechanical qualities. The interpenetrating network gives the hydrogel material high mechanical properties due to the presence of physical and chemical crosslinking. Hence, polyvinyl alcohol/chitosan/polyacrylamide interpenetrating polymer network hydrogel (HAPC‐Gel) was created in this study. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the oil contact angles about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation. Furthermore, the water could be divided from the oil‐in‐water emulsion. These results indicate that HAPC‐Gel composites have promising applications in oil–water separation. In this article, PVA/CS/PAM IPN hydrogel (HAPC‐Gel) was fabricated by two‐step free radical polymerization. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the OCAs about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation.
doi_str_mv 10.1002/app.54058
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828139225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828139225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIa7txEi9RxZ9UiS5gxcIakknrktrBTlVlxx24ISfBJWxZjTTzvTdPj5BLziacMTGFtp3IlMniiIw4U3mSZqI4JqN440mhlDwlZyFsGONcsmxEXudr07kAlhrboW_RYuehM3ZFW9f0W_Q0bvbOv9N1X3m3wibQ2nnqTPP9-bWHKKJgK4rbXROMszRgCwcHZ8_JSQ1NwIu_OSYvd7fP84dk8XT_OL9ZJKVQeZFgnkss0yoGklhXeZVyASXPIEclWI1SSZFKBACZKf5WZqBA5CVDmCngtZqNydXg23r3scPQ6Y3beRtfalGIgs-UEDJS1wNVeheCx1q33mzB95ozfehOx-70b3eRnQ7s3jTY_w_qm-VyUPwA9VNzgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828139225</pqid></control><display><type>article</type><title>Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wu, Jiangqin ; Lv, Zaosheng ; Lei, Yang ; Huang, Yanfen ; Liu, Xuegang</creator><creatorcontrib>Wu, Jiangqin ; Lv, Zaosheng ; Lei, Yang ; Huang, Yanfen ; Liu, Xuegang</creatorcontrib><description>Hydrogels have obtained extensive attention in oil–water separation due to their high hydrophilicity and weak viscosity. However, most hydrogels have limited applications due to their subpar mechanical qualities. The interpenetrating network gives the hydrogel material high mechanical properties due to the presence of physical and chemical crosslinking. Hence, polyvinyl alcohol/chitosan/polyacrylamide interpenetrating polymer network hydrogel (HAPC‐Gel) was created in this study. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the oil contact angles about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation. Furthermore, the water could be divided from the oil‐in‐water emulsion. These results indicate that HAPC‐Gel composites have promising applications in oil–water separation. In this article, PVA/CS/PAM IPN hydrogel (HAPC‐Gel) was fabricated by two‐step free radical polymerization. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the OCAs about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.54058</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>chemical stabilization ; Chitosan ; Contact angle ; Crosslinking ; Hydrogels ; Interpenetrating networks ; IPN hydrogels ; Materials science ; Mechanical properties ; oil–water separation ; Polyacrylamide ; Polymers ; Polyvinyl alcohol ; Separation ; super‐hydrophilicity</subject><ispartof>Journal of applied polymer science, 2023-08, Vol.140 (29), p.n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93</citedby><cites>FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93</cites><orcidid>0000-0002-4835-8314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Jiangqin</creatorcontrib><creatorcontrib>Lv, Zaosheng</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Huang, Yanfen</creatorcontrib><creatorcontrib>Liu, Xuegang</creatorcontrib><title>Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation</title><title>Journal of applied polymer science</title><description>Hydrogels have obtained extensive attention in oil–water separation due to their high hydrophilicity and weak viscosity. However, most hydrogels have limited applications due to their subpar mechanical qualities. The interpenetrating network gives the hydrogel material high mechanical properties due to the presence of physical and chemical crosslinking. Hence, polyvinyl alcohol/chitosan/polyacrylamide interpenetrating polymer network hydrogel (HAPC‐Gel) was created in this study. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the oil contact angles about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation. Furthermore, the water could be divided from the oil‐in‐water emulsion. These results indicate that HAPC‐Gel composites have promising applications in oil–water separation. In this article, PVA/CS/PAM IPN hydrogel (HAPC‐Gel) was fabricated by two‐step free radical polymerization. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the OCAs about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation.</description><subject>chemical stabilization</subject><subject>Chitosan</subject><subject>Contact angle</subject><subject>Crosslinking</subject><subject>Hydrogels</subject><subject>Interpenetrating networks</subject><subject>IPN hydrogels</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>oil–water separation</subject><subject>Polyacrylamide</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Separation</subject><subject>super‐hydrophilicity</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIa7txEi9RxZ9UiS5gxcIakknrktrBTlVlxx24ISfBJWxZjTTzvTdPj5BLziacMTGFtp3IlMniiIw4U3mSZqI4JqN440mhlDwlZyFsGONcsmxEXudr07kAlhrboW_RYuehM3ZFW9f0W_Q0bvbOv9N1X3m3wibQ2nnqTPP9-bWHKKJgK4rbXROMszRgCwcHZ8_JSQ1NwIu_OSYvd7fP84dk8XT_OL9ZJKVQeZFgnkss0yoGklhXeZVyASXPIEclWI1SSZFKBACZKf5WZqBA5CVDmCngtZqNydXg23r3scPQ6Y3beRtfalGIgs-UEDJS1wNVeheCx1q33mzB95ozfehOx-70b3eRnQ7s3jTY_w_qm-VyUPwA9VNzgA</recordid><startdate>20230805</startdate><enddate>20230805</enddate><creator>Wu, Jiangqin</creator><creator>Lv, Zaosheng</creator><creator>Lei, Yang</creator><creator>Huang, Yanfen</creator><creator>Liu, Xuegang</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4835-8314</orcidid></search><sort><creationdate>20230805</creationdate><title>Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation</title><author>Wu, Jiangqin ; Lv, Zaosheng ; Lei, Yang ; Huang, Yanfen ; Liu, Xuegang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>chemical stabilization</topic><topic>Chitosan</topic><topic>Contact angle</topic><topic>Crosslinking</topic><topic>Hydrogels</topic><topic>Interpenetrating networks</topic><topic>IPN hydrogels</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>oil–water separation</topic><topic>Polyacrylamide</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Separation</topic><topic>super‐hydrophilicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jiangqin</creatorcontrib><creatorcontrib>Lv, Zaosheng</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Huang, Yanfen</creatorcontrib><creatorcontrib>Liu, Xuegang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jiangqin</au><au>Lv, Zaosheng</au><au>Lei, Yang</au><au>Huang, Yanfen</au><au>Liu, Xuegang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation</atitle><jtitle>Journal of applied polymer science</jtitle><date>2023-08-05</date><risdate>2023</risdate><volume>140</volume><issue>29</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Hydrogels have obtained extensive attention in oil–water separation due to their high hydrophilicity and weak viscosity. However, most hydrogels have limited applications due to their subpar mechanical qualities. The interpenetrating network gives the hydrogel material high mechanical properties due to the presence of physical and chemical crosslinking. Hence, polyvinyl alcohol/chitosan/polyacrylamide interpenetrating polymer network hydrogel (HAPC‐Gel) was created in this study. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the oil contact angles about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation. Furthermore, the water could be divided from the oil‐in‐water emulsion. These results indicate that HAPC‐Gel composites have promising applications in oil–water separation. In this article, PVA/CS/PAM IPN hydrogel (HAPC‐Gel) was fabricated by two‐step free radical polymerization. HAPC‐Gel coating filter cloth showed underwater super‐oleophobic (the OCAs about 159°) and could stably separate oil–water mixtures in different oil phases and complex environments (acids, bases, salts), and the removal rate is still above 99% after 20 cycles of separation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.54058</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4835-8314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2023-08, Vol.140 (29), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2828139225
source Wiley-Blackwell Read & Publish Collection
subjects chemical stabilization
Chitosan
Contact angle
Crosslinking
Hydrogels
Interpenetrating networks
IPN hydrogels
Materials science
Mechanical properties
oil–water separation
Polyacrylamide
Polymers
Polyvinyl alcohol
Separation
super‐hydrophilicity
title Chitosan interpenetrating polymer network hydrogels for oil–water and emulsion separation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan%20interpenetrating%20polymer%20network%20hydrogels%20for%20oil%E2%80%93water%20and%20emulsion%20separation&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Wu,%20Jiangqin&rft.date=2023-08-05&rft.volume=140&rft.issue=29&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.54058&rft_dat=%3Cproquest_cross%3E2828139225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2978-e775ec4d1505efd7d412ac16a7e920fe595245eaaa5691bc6a9a27c0ea39a1f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828139225&rft_id=info:pmid/&rfr_iscdi=true