Loading…

Finite element analysis of the panel flutter of stiffened shallow shells

The aeroelastic stability of flat plates and shallow cylindrical shells stiffened with stringers is investigated. In the case of a curved panel, the supersonic gas flow is parallel to its generatrix. A mathematical formulation of the dynamics problem is based on the variational principle of virtual...

Full description

Saved in:
Bibliographic Details
Published in:Continuum mechanics and thermodynamics 2023-07, Vol.35 (4), p.1275-1290
Main Authors: Bochkarev, Sergey A., Lekomtsev, Sergey V., Matveenko, Valery P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-8c6ac05f731fb7aff480886e97476b823c95205fa8c751b47f58595e5ea2654f3
cites cdi_FETCH-LOGICAL-c358t-8c6ac05f731fb7aff480886e97476b823c95205fa8c751b47f58595e5ea2654f3
container_end_page 1290
container_issue 4
container_start_page 1275
container_title Continuum mechanics and thermodynamics
container_volume 35
creator Bochkarev, Sergey A.
Lekomtsev, Sergey V.
Matveenko, Valery P.
description The aeroelastic stability of flat plates and shallow cylindrical shells stiffened with stringers is investigated. In the case of a curved panel, the supersonic gas flow is parallel to its generatrix. A mathematical formulation of the dynamics problem is based on the variational principle of virtual displacements taking into account the work done by the inertial forces and aerodynamic pressure of the external supersonic gas flow determined according to the quasi-static aerodynamic theory. The solution is found by the finite element method in a three-dimensional formulation using the mode-superposition technique. The estimation of the shell stability is based on the analysis of complex eigenvalues of the system of equations calculated under gradually increasing aerodynamic pressure. The validity of the obtained results is confirmed by comparing them with the known solutions to a number of relevant problems. Numerical examples are used to analyze in detail the influence of the curvature ratio, the boundary conditions specified at the edges of the shallow shell, and the number of stringers on the boundary of stability loss. It is demonstrated that with an optimal arrangement of reinforcing elements, it is possible to achieve a significant increase in the critical parameters of the flutter.
doi_str_mv 10.1007/s00161-022-01123-6
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2828539353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A754308867</galeid><sourcerecordid>A754308867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-8c6ac05f731fb7aff480886e97476b823c95205fa8c751b47f58595e5ea2654f3</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxFr9Ap428byVP8vCHpvGWpMmXvRMKB1aGspWoDH99tKuiTczh8k83g-Gh9AjwROCsXhOGJOW1JjSGhNCWd1eoRFpWBk73l2jEe4YrwkR_BbdpbTDBeo4G6HF3AWXoQIPewi50kH7U3Kp6m2Vt1AddABfWX_MGeJZTNlZCwHWVdpq7_vv0sH7dI9urPYJHn77GH3OXz5mi3r5_vo2my5rw7jMtTStNphbwYhdCW1tI7GULXSiEe1KUmY6Tsu5lkZwsmqE5ZJ3HDho2vLGsjF6Gu49xP7rCCmrXX-MZeukqKSSs_JRVlyTwbXRHpQLts9Rm1Jr2DvTB7Cu6FPBG3Z-XhSADoCJfUoRrDpEt9fxpAhW54jVELEqEatLxKotEBugVMxhA_Fvl3-oH9gqfVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828539353</pqid></control><display><type>article</type><title>Finite element analysis of the panel flutter of stiffened shallow shells</title><source>Springer Link</source><creator>Bochkarev, Sergey A. ; Lekomtsev, Sergey V. ; Matveenko, Valery P.</creator><creatorcontrib>Bochkarev, Sergey A. ; Lekomtsev, Sergey V. ; Matveenko, Valery P.</creatorcontrib><description>The aeroelastic stability of flat plates and shallow cylindrical shells stiffened with stringers is investigated. In the case of a curved panel, the supersonic gas flow is parallel to its generatrix. A mathematical formulation of the dynamics problem is based on the variational principle of virtual displacements taking into account the work done by the inertial forces and aerodynamic pressure of the external supersonic gas flow determined according to the quasi-static aerodynamic theory. The solution is found by the finite element method in a three-dimensional formulation using the mode-superposition technique. The estimation of the shell stability is based on the analysis of complex eigenvalues of the system of equations calculated under gradually increasing aerodynamic pressure. The validity of the obtained results is confirmed by comparing them with the known solutions to a number of relevant problems. Numerical examples are used to analyze in detail the influence of the curvature ratio, the boundary conditions specified at the edges of the shallow shell, and the number of stringers on the boundary of stability loss. It is demonstrated that with an optimal arrangement of reinforcing elements, it is possible to achieve a significant increase in the critical parameters of the flutter.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-022-01123-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aeroelastic stability ; Analysis ; Boundary conditions ; Classical and Continuum Physics ; Curved panels ; Cylindrical shells ; Eigenvalues ; Engineering Thermodynamics ; External pressure ; Finite element method ; Flat plates ; Flow control ; Gas flow ; Heat and Mass Transfer ; Original Article ; Panel flutter ; Physics ; Physics and Astronomy ; Shallow shells ; Shell stability ; Stability analysis ; Stringers ; Structural Materials ; Superposition (mathematics) ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Continuum mechanics and thermodynamics, 2023-07, Vol.35 (4), p.1275-1290</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-8c6ac05f731fb7aff480886e97476b823c95205fa8c751b47f58595e5ea2654f3</citedby><cites>FETCH-LOGICAL-c358t-8c6ac05f731fb7aff480886e97476b823c95205fa8c751b47f58595e5ea2654f3</cites><orcidid>0000-0002-9722-1269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Bochkarev, Sergey A.</creatorcontrib><creatorcontrib>Lekomtsev, Sergey V.</creatorcontrib><creatorcontrib>Matveenko, Valery P.</creatorcontrib><title>Finite element analysis of the panel flutter of stiffened shallow shells</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>The aeroelastic stability of flat plates and shallow cylindrical shells stiffened with stringers is investigated. In the case of a curved panel, the supersonic gas flow is parallel to its generatrix. A mathematical formulation of the dynamics problem is based on the variational principle of virtual displacements taking into account the work done by the inertial forces and aerodynamic pressure of the external supersonic gas flow determined according to the quasi-static aerodynamic theory. The solution is found by the finite element method in a three-dimensional formulation using the mode-superposition technique. The estimation of the shell stability is based on the analysis of complex eigenvalues of the system of equations calculated under gradually increasing aerodynamic pressure. The validity of the obtained results is confirmed by comparing them with the known solutions to a number of relevant problems. Numerical examples are used to analyze in detail the influence of the curvature ratio, the boundary conditions specified at the edges of the shallow shell, and the number of stringers on the boundary of stability loss. It is demonstrated that with an optimal arrangement of reinforcing elements, it is possible to achieve a significant increase in the critical parameters of the flutter.</description><subject>Aeroelastic stability</subject><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Curved panels</subject><subject>Cylindrical shells</subject><subject>Eigenvalues</subject><subject>Engineering Thermodynamics</subject><subject>External pressure</subject><subject>Finite element method</subject><subject>Flat plates</subject><subject>Flow control</subject><subject>Gas flow</subject><subject>Heat and Mass Transfer</subject><subject>Original Article</subject><subject>Panel flutter</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shallow shells</subject><subject>Shell stability</subject><subject>Stability analysis</subject><subject>Stringers</subject><subject>Structural Materials</subject><subject>Superposition (mathematics)</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxFr9Ap428byVP8vCHpvGWpMmXvRMKB1aGspWoDH99tKuiTczh8k83g-Gh9AjwROCsXhOGJOW1JjSGhNCWd1eoRFpWBk73l2jEe4YrwkR_BbdpbTDBeo4G6HF3AWXoQIPewi50kH7U3Kp6m2Vt1AddABfWX_MGeJZTNlZCwHWVdpq7_vv0sH7dI9urPYJHn77GH3OXz5mi3r5_vo2my5rw7jMtTStNphbwYhdCW1tI7GULXSiEe1KUmY6Tsu5lkZwsmqE5ZJ3HDho2vLGsjF6Gu49xP7rCCmrXX-MZeukqKSSs_JRVlyTwbXRHpQLts9Rm1Jr2DvTB7Cu6FPBG3Z-XhSADoCJfUoRrDpEt9fxpAhW54jVELEqEatLxKotEBugVMxhA_Fvl3-oH9gqfVk</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Bochkarev, Sergey A.</creator><creator>Lekomtsev, Sergey V.</creator><creator>Matveenko, Valery P.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9722-1269</orcidid></search><sort><creationdate>20230701</creationdate><title>Finite element analysis of the panel flutter of stiffened shallow shells</title><author>Bochkarev, Sergey A. ; Lekomtsev, Sergey V. ; Matveenko, Valery P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-8c6ac05f731fb7aff480886e97476b823c95205fa8c751b47f58595e5ea2654f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aeroelastic stability</topic><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Curved panels</topic><topic>Cylindrical shells</topic><topic>Eigenvalues</topic><topic>Engineering Thermodynamics</topic><topic>External pressure</topic><topic>Finite element method</topic><topic>Flat plates</topic><topic>Flow control</topic><topic>Gas flow</topic><topic>Heat and Mass Transfer</topic><topic>Original Article</topic><topic>Panel flutter</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shallow shells</topic><topic>Shell stability</topic><topic>Stability analysis</topic><topic>Stringers</topic><topic>Structural Materials</topic><topic>Superposition (mathematics)</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bochkarev, Sergey A.</creatorcontrib><creatorcontrib>Lekomtsev, Sergey V.</creatorcontrib><creatorcontrib>Matveenko, Valery P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bochkarev, Sergey A.</au><au>Lekomtsev, Sergey V.</au><au>Matveenko, Valery P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element analysis of the panel flutter of stiffened shallow shells</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>4</issue><spage>1275</spage><epage>1290</epage><pages>1275-1290</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>The aeroelastic stability of flat plates and shallow cylindrical shells stiffened with stringers is investigated. In the case of a curved panel, the supersonic gas flow is parallel to its generatrix. A mathematical formulation of the dynamics problem is based on the variational principle of virtual displacements taking into account the work done by the inertial forces and aerodynamic pressure of the external supersonic gas flow determined according to the quasi-static aerodynamic theory. The solution is found by the finite element method in a three-dimensional formulation using the mode-superposition technique. The estimation of the shell stability is based on the analysis of complex eigenvalues of the system of equations calculated under gradually increasing aerodynamic pressure. The validity of the obtained results is confirmed by comparing them with the known solutions to a number of relevant problems. Numerical examples are used to analyze in detail the influence of the curvature ratio, the boundary conditions specified at the edges of the shallow shell, and the number of stringers on the boundary of stability loss. It is demonstrated that with an optimal arrangement of reinforcing elements, it is possible to achieve a significant increase in the critical parameters of the flutter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-022-01123-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9722-1269</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-1175
ispartof Continuum mechanics and thermodynamics, 2023-07, Vol.35 (4), p.1275-1290
issn 0935-1175
1432-0959
language eng
recordid cdi_proquest_journals_2828539353
source Springer Link
subjects Aeroelastic stability
Analysis
Boundary conditions
Classical and Continuum Physics
Curved panels
Cylindrical shells
Eigenvalues
Engineering Thermodynamics
External pressure
Finite element method
Flat plates
Flow control
Gas flow
Heat and Mass Transfer
Original Article
Panel flutter
Physics
Physics and Astronomy
Shallow shells
Shell stability
Stability analysis
Stringers
Structural Materials
Superposition (mathematics)
Theoretical and Applied Mechanics
Vibration
title Finite element analysis of the panel flutter of stiffened shallow shells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20analysis%20of%20the%20panel%20flutter%20of%20stiffened%20shallow%20shells&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Bochkarev,%20Sergey%20A.&rft.date=2023-07-01&rft.volume=35&rft.issue=4&rft.spage=1275&rft.epage=1290&rft.pages=1275-1290&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-022-01123-6&rft_dat=%3Cgale_proqu%3EA754308867%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-8c6ac05f731fb7aff480886e97476b823c95205fa8c751b47f58595e5ea2654f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828539353&rft_id=info:pmid/&rft_galeid=A754308867&rfr_iscdi=true