Loading…

NoRefER: a Referenceless Quality Metric for Automatic Speech Recognition via Semi-Supervised Language Model Fine-Tuning with Contrastive Learning

This paper introduces NoRefER, a novel referenceless quality metric for automatic speech recognition (ASR) systems. Traditional reference-based metrics for evaluating ASR systems require costly ground-truth transcripts. NoRefER overcomes this limitation by fine-tuning a multilingual language model f...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-06
Main Authors: Kamer Ali Yuksel, Ferreira, Thiago, Javadi, Golara, El-Badrashiny, Mohamed, Gunduz, Ahmet
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kamer Ali Yuksel
Ferreira, Thiago
Javadi, Golara
El-Badrashiny, Mohamed
Gunduz, Ahmet
description This paper introduces NoRefER, a novel referenceless quality metric for automatic speech recognition (ASR) systems. Traditional reference-based metrics for evaluating ASR systems require costly ground-truth transcripts. NoRefER overcomes this limitation by fine-tuning a multilingual language model for pair-wise ranking ASR hypotheses using contrastive learning with Siamese network architecture. The self-supervised NoRefER exploits the known quality relationships between hypotheses from multiple compression levels of an ASR for learning to rank intra-sample hypotheses by quality, which is essential for model comparisons. The semi-supervised version also uses a referenced dataset to improve its inter-sample quality ranking, which is crucial for selecting potentially erroneous samples. The results indicate that NoRefER correlates highly with reference-based metrics and their intra-sample ranks, indicating a high potential for referenceless ASR evaluation or a/b testing.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2828968314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828968314</sourcerecordid><originalsourceid>FETCH-proquest_journals_28289683143</originalsourceid><addsrcrecordid>eNqNi91Kw0AQhRdBsGjfYaDXgXS3P7F3Ulq8aAWb3pchnaRT0p24OxvxMXxjI_gAXp3v8J1zZ0bWuWlWzKx9MOMYr3me28XSzuduZL7f5ED15rAChAEokK-opRjhPWHL-gV70sAV1BLgJancUIdWdkTVZXhU0nhWFg89I5R046xMHYWeI51hh75J2BDs5UwtbNlTdkyefQOfrBdYi9eAUbkn2BGGX_Nk7mtsI43_8tFMtpvj-jXrgnwkinq6Sgp-UCdb2OJ5UbjpzP1v9QPCpFa-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828968314</pqid></control><display><type>article</type><title>NoRefER: a Referenceless Quality Metric for Automatic Speech Recognition via Semi-Supervised Language Model Fine-Tuning with Contrastive Learning</title><source>Publicly Available Content Database</source><creator>Kamer Ali Yuksel ; Ferreira, Thiago ; Javadi, Golara ; El-Badrashiny, Mohamed ; Gunduz, Ahmet</creator><creatorcontrib>Kamer Ali Yuksel ; Ferreira, Thiago ; Javadi, Golara ; El-Badrashiny, Mohamed ; Gunduz, Ahmet</creatorcontrib><description>This paper introduces NoRefER, a novel referenceless quality metric for automatic speech recognition (ASR) systems. Traditional reference-based metrics for evaluating ASR systems require costly ground-truth transcripts. NoRefER overcomes this limitation by fine-tuning a multilingual language model for pair-wise ranking ASR hypotheses using contrastive learning with Siamese network architecture. The self-supervised NoRefER exploits the known quality relationships between hypotheses from multiple compression levels of an ASR for learning to rank intra-sample hypotheses by quality, which is essential for model comparisons. The semi-supervised version also uses a referenced dataset to improve its inter-sample quality ranking, which is crucial for selecting potentially erroneous samples. The results indicate that NoRefER correlates highly with reference-based metrics and their intra-sample ranks, indicating a high potential for referenceless ASR evaluation or a/b testing.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Automatic speech recognition ; Computer architecture ; Hypotheses ; Learning ; Ranking</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2828968314?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kamer Ali Yuksel</creatorcontrib><creatorcontrib>Ferreira, Thiago</creatorcontrib><creatorcontrib>Javadi, Golara</creatorcontrib><creatorcontrib>El-Badrashiny, Mohamed</creatorcontrib><creatorcontrib>Gunduz, Ahmet</creatorcontrib><title>NoRefER: a Referenceless Quality Metric for Automatic Speech Recognition via Semi-Supervised Language Model Fine-Tuning with Contrastive Learning</title><title>arXiv.org</title><description>This paper introduces NoRefER, a novel referenceless quality metric for automatic speech recognition (ASR) systems. Traditional reference-based metrics for evaluating ASR systems require costly ground-truth transcripts. NoRefER overcomes this limitation by fine-tuning a multilingual language model for pair-wise ranking ASR hypotheses using contrastive learning with Siamese network architecture. The self-supervised NoRefER exploits the known quality relationships between hypotheses from multiple compression levels of an ASR for learning to rank intra-sample hypotheses by quality, which is essential for model comparisons. The semi-supervised version also uses a referenced dataset to improve its inter-sample quality ranking, which is crucial for selecting potentially erroneous samples. The results indicate that NoRefER correlates highly with reference-based metrics and their intra-sample ranks, indicating a high potential for referenceless ASR evaluation or a/b testing.</description><subject>Artificial neural networks</subject><subject>Automatic speech recognition</subject><subject>Computer architecture</subject><subject>Hypotheses</subject><subject>Learning</subject><subject>Ranking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi91Kw0AQhRdBsGjfYaDXgXS3P7F3Ulq8aAWb3pchnaRT0p24OxvxMXxjI_gAXp3v8J1zZ0bWuWlWzKx9MOMYr3me28XSzuduZL7f5ED15rAChAEokK-opRjhPWHL-gV70sAV1BLgJancUIdWdkTVZXhU0nhWFg89I5R046xMHYWeI51hh75J2BDs5UwtbNlTdkyefQOfrBdYi9eAUbkn2BGGX_Nk7mtsI43_8tFMtpvj-jXrgnwkinq6Sgp-UCdb2OJ5UbjpzP1v9QPCpFa-</recordid><startdate>20230621</startdate><enddate>20230621</enddate><creator>Kamer Ali Yuksel</creator><creator>Ferreira, Thiago</creator><creator>Javadi, Golara</creator><creator>El-Badrashiny, Mohamed</creator><creator>Gunduz, Ahmet</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230621</creationdate><title>NoRefER: a Referenceless Quality Metric for Automatic Speech Recognition via Semi-Supervised Language Model Fine-Tuning with Contrastive Learning</title><author>Kamer Ali Yuksel ; Ferreira, Thiago ; Javadi, Golara ; El-Badrashiny, Mohamed ; Gunduz, Ahmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28289683143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Automatic speech recognition</topic><topic>Computer architecture</topic><topic>Hypotheses</topic><topic>Learning</topic><topic>Ranking</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamer Ali Yuksel</creatorcontrib><creatorcontrib>Ferreira, Thiago</creatorcontrib><creatorcontrib>Javadi, Golara</creatorcontrib><creatorcontrib>El-Badrashiny, Mohamed</creatorcontrib><creatorcontrib>Gunduz, Ahmet</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamer Ali Yuksel</au><au>Ferreira, Thiago</au><au>Javadi, Golara</au><au>El-Badrashiny, Mohamed</au><au>Gunduz, Ahmet</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>NoRefER: a Referenceless Quality Metric for Automatic Speech Recognition via Semi-Supervised Language Model Fine-Tuning with Contrastive Learning</atitle><jtitle>arXiv.org</jtitle><date>2023-06-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper introduces NoRefER, a novel referenceless quality metric for automatic speech recognition (ASR) systems. Traditional reference-based metrics for evaluating ASR systems require costly ground-truth transcripts. NoRefER overcomes this limitation by fine-tuning a multilingual language model for pair-wise ranking ASR hypotheses using contrastive learning with Siamese network architecture. The self-supervised NoRefER exploits the known quality relationships between hypotheses from multiple compression levels of an ASR for learning to rank intra-sample hypotheses by quality, which is essential for model comparisons. The semi-supervised version also uses a referenced dataset to improve its inter-sample quality ranking, which is crucial for selecting potentially erroneous samples. The results indicate that NoRefER correlates highly with reference-based metrics and their intra-sample ranks, indicating a high potential for referenceless ASR evaluation or a/b testing.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2828968314
source Publicly Available Content Database
subjects Artificial neural networks
Automatic speech recognition
Computer architecture
Hypotheses
Learning
Ranking
title NoRefER: a Referenceless Quality Metric for Automatic Speech Recognition via Semi-Supervised Language Model Fine-Tuning with Contrastive Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=NoRefER:%20a%20Referenceless%20Quality%20Metric%20for%20Automatic%20Speech%20Recognition%20via%20Semi-Supervised%20Language%20Model%20Fine-Tuning%20with%20Contrastive%20Learning&rft.jtitle=arXiv.org&rft.au=Kamer%20Ali%20Yuksel&rft.date=2023-06-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2828968314%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28289683143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828968314&rft_id=info:pmid/&rfr_iscdi=true