Loading…
Light-induced switching between singlet and triplet superconducting states
While the search for topological triplet-pairing superconductivity has remained a challenge, recent developments in optically stabilizing metastable superconducting states suggest a new route to realizing this elusive phase. Here, we devise a testable theory of competing superconducting orders that...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | While the search for topological triplet-pairing superconductivity has remained a challenge, recent developments in optically stabilizing metastable superconducting states suggest a new route to realizing this elusive phase. Here, we devise a testable theory of competing superconducting orders that permits ultrafast switching to an opposite-parity superconducting phase in centrosymmetric crystals with strong spin-orbit coupling. Using both microscopic and phenomenological models, we show that dynamical inversion symmetry breaking with a tailored light pulse can induce odd-parity (spin triplet) order parameter oscillations in a conventional even-parity (spin singlet) superconductor, which when driven strongly can send the system to a competing minimum in its free energy landscape. Our results provide new guiding principles for engineering unconventional electronic phases using light, suggesting a fundamentally non-equilibrium route toward realizing topological superconductivity. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2306.13632 |