Loading…
Development of magnitude correlation equations for the tsunamigenic zones of the Indian Ocean
There is a pressing need for a homogonous tsunami catalogue for the Indian Ocean as nearly 20% of tsunami events worldwide affect the region. Any study on tsunami hazard assessment necessitates a homogenous tsunamigenic earthquake catalogue. The existing records of strong tsunamigenic earthquakes ha...
Saved in:
Published in: | Journal of seismology 2023-06, Vol.27 (3), p.473-492 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a337t-2a71c19b1c05ae23806f2d40a90a7beb527dc6c9ed43516d428684230dde05043 |
container_end_page | 492 |
container_issue | 3 |
container_start_page | 473 |
container_title | Journal of seismology |
container_volume | 27 |
creator | Sabah, Nazeel Shanker, Daya |
description | There is a pressing need for a homogonous tsunami catalogue for the Indian Ocean as nearly 20% of tsunami events worldwide affect the region. Any study on tsunami hazard assessment necessitates a homogenous tsunamigenic earthquake catalogue. The existing records of strong tsunamigenic earthquakes have the magnitudes expressed in moment magnitude (M
W
), body wave magnitude (m
b
), local magnitude (M
L
), and surface wave magnitude (M
S
). This study deals with developing regional magnitude correlation equations for tsunamigenic earthquakes of the Indian Ocean. The present investigation estimates the threshold magnitude and focal depth for an earthquake to turn tsunamigenic. It is found that earthquakes above M
W
≥ 5.9 and focal depth ≤ 80 km have the potential to generate a tsunami in the region. The moment magnitude is the most proper scale to characterize the size of large tsunamigenic earthquakes as it is more directly related to the released energy and does not suffer saturation. Hence, equations have been developed to convert surface wave magnitude (M
S
) to moment magnitude (M
W
) using three types of regression models viz. standard regression (SR), inverse standard regression (ISR), and orthogonal standard regression (OSR). The efficacy of these models has been compared in terms of R-squared and residual analysis. This study indicates that OSR is the best-suited regression model for developing magnitude correlation equations for the three zones of the Indian Ocean region under study. Also, a single unified conversion equation for the whole of the Indian Ocean has been derived with rational accuracy. |
doi_str_mv | 10.1007/s10950-023-10151-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829589136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829589136</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-2a71c19b1c05ae23806f2d40a90a7beb527dc6c9ed43516d428684230dde05043</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA8-ok2exujlL_FQpeFLxISJPZuqWbtMmuVD-921bw5mneMO-9gR8hlwyuGUB5kxgoCRlwkTFgkmXbIzJishxWWb4dD1pUIsuLXJ2Ss5SWAKAqJUbk_Q4_cRXWLfqOhpq2ZuGbrndIbYgRV6Zrgqe46fci0TpE2n0g7VLvTdss0DeWfgePaZfeXabeNcbTZ4vGn5OT2qwSXvzOMXl9uH-ZPGWz58fp5HaWGSHKLuOmZJapObMgDXJRQVFzl4NRYMo5ziUvnS2sQpcLyQqX86qoci7AOQQJuRiTq0PvOoZNj6nTy9BHP7zUvOJKVoqJYnDxg8vGkFLEWq9j05r4pRnoHUZ9wKgHjHqPUW-HkDiE0mD2C4x_1f-kfgDwznaC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829589136</pqid></control><display><type>article</type><title>Development of magnitude correlation equations for the tsunamigenic zones of the Indian Ocean</title><source>Springer Link</source><creator>Sabah, Nazeel ; Shanker, Daya</creator><creatorcontrib>Sabah, Nazeel ; Shanker, Daya</creatorcontrib><description>There is a pressing need for a homogonous tsunami catalogue for the Indian Ocean as nearly 20% of tsunami events worldwide affect the region. Any study on tsunami hazard assessment necessitates a homogenous tsunamigenic earthquake catalogue. The existing records of strong tsunamigenic earthquakes have the magnitudes expressed in moment magnitude (M
W
), body wave magnitude (m
b
), local magnitude (M
L
), and surface wave magnitude (M
S
). This study deals with developing regional magnitude correlation equations for tsunamigenic earthquakes of the Indian Ocean. The present investigation estimates the threshold magnitude and focal depth for an earthquake to turn tsunamigenic. It is found that earthquakes above M
W
≥ 5.9 and focal depth ≤ 80 km have the potential to generate a tsunami in the region. The moment magnitude is the most proper scale to characterize the size of large tsunamigenic earthquakes as it is more directly related to the released energy and does not suffer saturation. Hence, equations have been developed to convert surface wave magnitude (M
S
) to moment magnitude (M
W
) using three types of regression models viz. standard regression (SR), inverse standard regression (ISR), and orthogonal standard regression (OSR). The efficacy of these models has been compared in terms of R-squared and residual analysis. This study indicates that OSR is the best-suited regression model for developing magnitude correlation equations for the three zones of the Indian Ocean region under study. Also, a single unified conversion equation for the whole of the Indian Ocean has been derived with rational accuracy.</description><identifier>ISSN: 1383-4649</identifier><identifier>EISSN: 1573-157X</identifier><identifier>DOI: 10.1007/s10950-023-10151-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Catalogues ; Correlation ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hazard assessment ; Hydrogeology ; Oceans ; Regional development ; Regression analysis ; Regression models ; Saturation ; Seismic activity ; Seismology ; Structural Geology ; Surface water waves ; Surface waves ; Tsunami hazard ; Tsunamis ; Weather hazards</subject><ispartof>Journal of seismology, 2023-06, Vol.27 (3), p.473-492</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a337t-2a71c19b1c05ae23806f2d40a90a7beb527dc6c9ed43516d428684230dde05043</cites><orcidid>0000-0001-7090-1507 ; 0000-0002-8153-1393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sabah, Nazeel</creatorcontrib><creatorcontrib>Shanker, Daya</creatorcontrib><title>Development of magnitude correlation equations for the tsunamigenic zones of the Indian Ocean</title><title>Journal of seismology</title><addtitle>J Seismol</addtitle><description>There is a pressing need for a homogonous tsunami catalogue for the Indian Ocean as nearly 20% of tsunami events worldwide affect the region. Any study on tsunami hazard assessment necessitates a homogenous tsunamigenic earthquake catalogue. The existing records of strong tsunamigenic earthquakes have the magnitudes expressed in moment magnitude (M
W
), body wave magnitude (m
b
), local magnitude (M
L
), and surface wave magnitude (M
S
). This study deals with developing regional magnitude correlation equations for tsunamigenic earthquakes of the Indian Ocean. The present investigation estimates the threshold magnitude and focal depth for an earthquake to turn tsunamigenic. It is found that earthquakes above M
W
≥ 5.9 and focal depth ≤ 80 km have the potential to generate a tsunami in the region. The moment magnitude is the most proper scale to characterize the size of large tsunamigenic earthquakes as it is more directly related to the released energy and does not suffer saturation. Hence, equations have been developed to convert surface wave magnitude (M
S
) to moment magnitude (M
W
) using three types of regression models viz. standard regression (SR), inverse standard regression (ISR), and orthogonal standard regression (OSR). The efficacy of these models has been compared in terms of R-squared and residual analysis. This study indicates that OSR is the best-suited regression model for developing magnitude correlation equations for the three zones of the Indian Ocean region under study. Also, a single unified conversion equation for the whole of the Indian Ocean has been derived with rational accuracy.</description><subject>Catalogues</subject><subject>Correlation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hazard assessment</subject><subject>Hydrogeology</subject><subject>Oceans</subject><subject>Regional development</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Saturation</subject><subject>Seismic activity</subject><subject>Seismology</subject><subject>Structural Geology</subject><subject>Surface water waves</subject><subject>Surface waves</subject><subject>Tsunami hazard</subject><subject>Tsunamis</subject><subject>Weather hazards</subject><issn>1383-4649</issn><issn>1573-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPA8-ok2exujlL_FQpeFLxISJPZuqWbtMmuVD-921bw5mneMO-9gR8hlwyuGUB5kxgoCRlwkTFgkmXbIzJishxWWb4dD1pUIsuLXJ2Ss5SWAKAqJUbk_Q4_cRXWLfqOhpq2ZuGbrndIbYgRV6Zrgqe46fci0TpE2n0g7VLvTdss0DeWfgePaZfeXabeNcbTZ4vGn5OT2qwSXvzOMXl9uH-ZPGWz58fp5HaWGSHKLuOmZJapObMgDXJRQVFzl4NRYMo5ziUvnS2sQpcLyQqX86qoci7AOQQJuRiTq0PvOoZNj6nTy9BHP7zUvOJKVoqJYnDxg8vGkFLEWq9j05r4pRnoHUZ9wKgHjHqPUW-HkDiE0mD2C4x_1f-kfgDwznaC</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Sabah, Nazeel</creator><creator>Shanker, Daya</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7090-1507</orcidid><orcidid>https://orcid.org/0000-0002-8153-1393</orcidid></search><sort><creationdate>20230601</creationdate><title>Development of magnitude correlation equations for the tsunamigenic zones of the Indian Ocean</title><author>Sabah, Nazeel ; Shanker, Daya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-2a71c19b1c05ae23806f2d40a90a7beb527dc6c9ed43516d428684230dde05043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalogues</topic><topic>Correlation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hazard assessment</topic><topic>Hydrogeology</topic><topic>Oceans</topic><topic>Regional development</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Saturation</topic><topic>Seismic activity</topic><topic>Seismology</topic><topic>Structural Geology</topic><topic>Surface water waves</topic><topic>Surface waves</topic><topic>Tsunami hazard</topic><topic>Tsunamis</topic><topic>Weather hazards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabah, Nazeel</creatorcontrib><creatorcontrib>Shanker, Daya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of seismology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabah, Nazeel</au><au>Shanker, Daya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of magnitude correlation equations for the tsunamigenic zones of the Indian Ocean</atitle><jtitle>Journal of seismology</jtitle><stitle>J Seismol</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>27</volume><issue>3</issue><spage>473</spage><epage>492</epage><pages>473-492</pages><issn>1383-4649</issn><eissn>1573-157X</eissn><abstract>There is a pressing need for a homogonous tsunami catalogue for the Indian Ocean as nearly 20% of tsunami events worldwide affect the region. Any study on tsunami hazard assessment necessitates a homogenous tsunamigenic earthquake catalogue. The existing records of strong tsunamigenic earthquakes have the magnitudes expressed in moment magnitude (M
W
), body wave magnitude (m
b
), local magnitude (M
L
), and surface wave magnitude (M
S
). This study deals with developing regional magnitude correlation equations for tsunamigenic earthquakes of the Indian Ocean. The present investigation estimates the threshold magnitude and focal depth for an earthquake to turn tsunamigenic. It is found that earthquakes above M
W
≥ 5.9 and focal depth ≤ 80 km have the potential to generate a tsunami in the region. The moment magnitude is the most proper scale to characterize the size of large tsunamigenic earthquakes as it is more directly related to the released energy and does not suffer saturation. Hence, equations have been developed to convert surface wave magnitude (M
S
) to moment magnitude (M
W
) using three types of regression models viz. standard regression (SR), inverse standard regression (ISR), and orthogonal standard regression (OSR). The efficacy of these models has been compared in terms of R-squared and residual analysis. This study indicates that OSR is the best-suited regression model for developing magnitude correlation equations for the three zones of the Indian Ocean region under study. Also, a single unified conversion equation for the whole of the Indian Ocean has been derived with rational accuracy.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10950-023-10151-x</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7090-1507</orcidid><orcidid>https://orcid.org/0000-0002-8153-1393</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-4649 |
ispartof | Journal of seismology, 2023-06, Vol.27 (3), p.473-492 |
issn | 1383-4649 1573-157X |
language | eng |
recordid | cdi_proquest_journals_2829589136 |
source | Springer Link |
subjects | Catalogues Correlation Earth and Environmental Science Earth Sciences Earthquakes Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hazard assessment Hydrogeology Oceans Regional development Regression analysis Regression models Saturation Seismic activity Seismology Structural Geology Surface water waves Surface waves Tsunami hazard Tsunamis Weather hazards |
title | Development of magnitude correlation equations for the tsunamigenic zones of the Indian Ocean |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20magnitude%20correlation%20equations%20for%20the%20tsunamigenic%20zones%20of%20the%20Indian%20Ocean&rft.jtitle=Journal%20of%20seismology&rft.au=Sabah,%20Nazeel&rft.date=2023-06-01&rft.volume=27&rft.issue=3&rft.spage=473&rft.epage=492&rft.pages=473-492&rft.issn=1383-4649&rft.eissn=1573-157X&rft_id=info:doi/10.1007/s10950-023-10151-x&rft_dat=%3Cproquest_cross%3E2829589136%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-2a71c19b1c05ae23806f2d40a90a7beb527dc6c9ed43516d428684230dde05043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829589136&rft_id=info:pmid/&rfr_iscdi=true |