Loading…
Separate Hydrolysis and Fermentation of Kitchen Waste Residues Using Multi-Enzyme Preparation from Aspergillus niger P-19 for the Production of Biofertilizer Formulations
This study addresses the management of kitchen waste by transforming it into biofertilizer formulations, utilizing an effective, in-house-developed multi-enzyme preparation. An approach consisting of separate hydrolysis and fermentation bioprocessing processes was used, employing a multi-enzyme prep...
Saved in:
Published in: | Sustainability 2023-06, Vol.15 (12), p.9182 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study addresses the management of kitchen waste by transforming it into biofertilizer formulations, utilizing an effective, in-house-developed multi-enzyme preparation. An approach consisting of separate hydrolysis and fermentation bioprocessing processes was used, employing a multi-enzyme preparation from Aspergillus niger P-19 to separately hydrolyze kitchen waste, followed by the fermentation of the hydrolysate for the growth of Klebsiella pneumoniae AP-407, which has biofertilizer traits. This has led to the simultaneous generation of liquid as well as carrier-based biofertilizer formulations with viable cell counts of 3.00 × 1012 CFU/mL and 3.00 × 1012 CFU/g, respectively. Both biofertilizer formulations significantly enhanced the morphometric characteristics and leaf chlorophyll contents of Tagetes erecta, in addition to enriching the soil with essential nutrients. The current study adopted a novel processing technology for the manufacturing of both carrier and liquid biofertilizers, adopting a zero-waste approach for the management of kitchen waste. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su15129182 |