Loading…
Inference of strength and phase transition kinetics in dynamically-compressed tin
Dynamic compression experiments in condensed matter are of interest in part because they provide opportunities to examine material response under extreme conditions; however, the inference of material behavior from dynamic experiments is challenging in the presence of phase transitions exhibiting ki...
Saved in:
Published in: | Journal of applied physics 2023-06, Vol.133 (24), p.245903 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-ba0fae9da289d51f25c4655696b1c2700ffd50fde29b3c55551b0b60b6a60463 |
container_end_page | |
container_issue | 24 |
container_start_page | 245903 |
container_title | Journal of applied physics |
container_volume | 133 |
creator | Schill, W. J. Schmidt, K. L. Austin, R. A. Anderson, W. W. Belof, J. L. Brown, J. L. Barton, N. R. |
description | Dynamic compression experiments in condensed matter are of interest in part because they provide opportunities to examine material response under extreme conditions; however, the inference of material behavior from dynamic experiments is challenging in the presence of phase transitions exhibiting kinetic processes. Demonstrating an approach to quantitative interpretation of such dynamic experiments, we present a Bayesian model calibration of strength and phase transformation parameters to data drawn from pulsed power and gas gun shot experiments. The posterior predictions of the Bayesian model capture the experimental measurements and account for the various uncertainties in the experimental configurations. This holistic approach to model calibration utilizing multiple types of experimental data identifies important cross correlations among kinetics, strength, and the phase boundary. Improved insight into potential sources of current model form error is provided by comparing the differences between calibrations against different subsets of the experimental data. |
doi_str_mv | 10.1063/5.0150749 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2829915190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829915190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-ba0fae9da289d51f25c4655696b1c2700ffd50fde29b3c55551b0b60b6a60463</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q9KSwdZLd7G6OUvwoFEToPWTzYVPbZE1Sof_eLSt4NwxkDg8zw4vQNYEZgbp8YDMgDJqKn6AJgZYXDWNwiiYAlBQtb_g5ukhpA0BIW_IJel94a6LxyuBgccpD-5HXWHqN-7VMBucofXLZBY8_nTfZqYSdx_rg5c4pud0eChV2fTQpGY2z85fozMptMle__xStnp9W89di-faymD8uC1WSKhedBCsN15K2XDNiKVNVzVjN644o2gBYqxlYbSjvSsWGRzro6qFkDVVdTtHNODak7ERSLhu1VsF7o7KgFKqqpgO6HVEfw9fepCw2YR_9cJagLeWcMMJhUHejUjGkFI0VfXQ7GQ-CgDimKpj4TXWw96M9bpTHWP6Hv0P8g6LXtvwB38qFWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829915190</pqid></control><display><type>article</type><title>Inference of strength and phase transition kinetics in dynamically-compressed tin</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Schill, W. J. ; Schmidt, K. L. ; Austin, R. A. ; Anderson, W. W. ; Belof, J. L. ; Brown, J. L. ; Barton, N. R.</creator><creatorcontrib>Schill, W. J. ; Schmidt, K. L. ; Austin, R. A. ; Anderson, W. W. ; Belof, J. L. ; Brown, J. L. ; Barton, N. R. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Dynamic compression experiments in condensed matter are of interest in part because they provide opportunities to examine material response under extreme conditions; however, the inference of material behavior from dynamic experiments is challenging in the presence of phase transitions exhibiting kinetic processes. Demonstrating an approach to quantitative interpretation of such dynamic experiments, we present a Bayesian model calibration of strength and phase transformation parameters to data drawn from pulsed power and gas gun shot experiments. The posterior predictions of the Bayesian model capture the experimental measurements and account for the various uncertainties in the experimental configurations. This holistic approach to model calibration utilizing multiple types of experimental data identifies important cross correlations among kinetics, strength, and the phase boundary. Improved insight into potential sources of current model form error is provided by comparing the differences between calibrations against different subsets of the experimental data.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0150749</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bayesian analysis ; Calibration ; Compressive strength ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Cross correlation ; ENGINEERING ; Gas guns ; Inference ; Kinetics ; Model forms ; Phase transitions</subject><ispartof>Journal of applied physics, 2023-06, Vol.133 (24), p.245903</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-ba0fae9da289d51f25c4655696b1c2700ffd50fde29b3c55551b0b60b6a60463</cites><orcidid>0000-0002-4548-6783 ; 0000-0001-8350-712X ; 0000-0003-0440-8719 ; 0000-0001-6551-7439 ; 0000-0003-0199-6930 ; 0000-0003-0950-7433 ; 000000018350712X ; 0000000245486783 ; 0000000309507433 ; 0000000301996930 ; 0000000304408719 ; 0000000165517439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2204462$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schill, W. J.</creatorcontrib><creatorcontrib>Schmidt, K. L.</creatorcontrib><creatorcontrib>Austin, R. A.</creatorcontrib><creatorcontrib>Anderson, W. W.</creatorcontrib><creatorcontrib>Belof, J. L.</creatorcontrib><creatorcontrib>Brown, J. L.</creatorcontrib><creatorcontrib>Barton, N. R.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Inference of strength and phase transition kinetics in dynamically-compressed tin</title><title>Journal of applied physics</title><description>Dynamic compression experiments in condensed matter are of interest in part because they provide opportunities to examine material response under extreme conditions; however, the inference of material behavior from dynamic experiments is challenging in the presence of phase transitions exhibiting kinetic processes. Demonstrating an approach to quantitative interpretation of such dynamic experiments, we present a Bayesian model calibration of strength and phase transformation parameters to data drawn from pulsed power and gas gun shot experiments. The posterior predictions of the Bayesian model capture the experimental measurements and account for the various uncertainties in the experimental configurations. This holistic approach to model calibration utilizing multiple types of experimental data identifies important cross correlations among kinetics, strength, and the phase boundary. Improved insight into potential sources of current model form error is provided by comparing the differences between calibrations against different subsets of the experimental data.</description><subject>Applied physics</subject><subject>Bayesian analysis</subject><subject>Calibration</subject><subject>Compressive strength</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Cross correlation</subject><subject>ENGINEERING</subject><subject>Gas guns</subject><subject>Inference</subject><subject>Kinetics</subject><subject>Model forms</subject><subject>Phase transitions</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q9KSwdZLd7G6OUvwoFEToPWTzYVPbZE1Sof_eLSt4NwxkDg8zw4vQNYEZgbp8YDMgDJqKn6AJgZYXDWNwiiYAlBQtb_g5ukhpA0BIW_IJel94a6LxyuBgccpD-5HXWHqN-7VMBucofXLZBY8_nTfZqYSdx_rg5c4pud0eChV2fTQpGY2z85fozMptMle__xStnp9W89di-faymD8uC1WSKhedBCsN15K2XDNiKVNVzVjN644o2gBYqxlYbSjvSsWGRzro6qFkDVVdTtHNODak7ERSLhu1VsF7o7KgFKqqpgO6HVEfw9fepCw2YR_9cJagLeWcMMJhUHejUjGkFI0VfXQ7GQ-CgDimKpj4TXWw96M9bpTHWP6Hv0P8g6LXtvwB38qFWg</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Schill, W. J.</creator><creator>Schmidt, K. L.</creator><creator>Austin, R. A.</creator><creator>Anderson, W. W.</creator><creator>Belof, J. L.</creator><creator>Brown, J. L.</creator><creator>Barton, N. R.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4548-6783</orcidid><orcidid>https://orcid.org/0000-0001-8350-712X</orcidid><orcidid>https://orcid.org/0000-0003-0440-8719</orcidid><orcidid>https://orcid.org/0000-0001-6551-7439</orcidid><orcidid>https://orcid.org/0000-0003-0199-6930</orcidid><orcidid>https://orcid.org/0000-0003-0950-7433</orcidid><orcidid>https://orcid.org/000000018350712X</orcidid><orcidid>https://orcid.org/0000000245486783</orcidid><orcidid>https://orcid.org/0000000309507433</orcidid><orcidid>https://orcid.org/0000000301996930</orcidid><orcidid>https://orcid.org/0000000304408719</orcidid><orcidid>https://orcid.org/0000000165517439</orcidid></search><sort><creationdate>20230628</creationdate><title>Inference of strength and phase transition kinetics in dynamically-compressed tin</title><author>Schill, W. J. ; Schmidt, K. L. ; Austin, R. A. ; Anderson, W. W. ; Belof, J. L. ; Brown, J. L. ; Barton, N. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-ba0fae9da289d51f25c4655696b1c2700ffd50fde29b3c55551b0b60b6a60463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Bayesian analysis</topic><topic>Calibration</topic><topic>Compressive strength</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Cross correlation</topic><topic>ENGINEERING</topic><topic>Gas guns</topic><topic>Inference</topic><topic>Kinetics</topic><topic>Model forms</topic><topic>Phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schill, W. J.</creatorcontrib><creatorcontrib>Schmidt, K. L.</creatorcontrib><creatorcontrib>Austin, R. A.</creatorcontrib><creatorcontrib>Anderson, W. W.</creatorcontrib><creatorcontrib>Belof, J. L.</creatorcontrib><creatorcontrib>Brown, J. L.</creatorcontrib><creatorcontrib>Barton, N. R.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schill, W. J.</au><au>Schmidt, K. L.</au><au>Austin, R. A.</au><au>Anderson, W. W.</au><au>Belof, J. L.</au><au>Brown, J. L.</au><au>Barton, N. R.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference of strength and phase transition kinetics in dynamically-compressed tin</atitle><jtitle>Journal of applied physics</jtitle><date>2023-06-28</date><risdate>2023</risdate><volume>133</volume><issue>24</issue><spage>245903</spage><pages>245903-</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Dynamic compression experiments in condensed matter are of interest in part because they provide opportunities to examine material response under extreme conditions; however, the inference of material behavior from dynamic experiments is challenging in the presence of phase transitions exhibiting kinetic processes. Demonstrating an approach to quantitative interpretation of such dynamic experiments, we present a Bayesian model calibration of strength and phase transformation parameters to data drawn from pulsed power and gas gun shot experiments. The posterior predictions of the Bayesian model capture the experimental measurements and account for the various uncertainties in the experimental configurations. This holistic approach to model calibration utilizing multiple types of experimental data identifies important cross correlations among kinetics, strength, and the phase boundary. Improved insight into potential sources of current model form error is provided by comparing the differences between calibrations against different subsets of the experimental data.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0150749</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4548-6783</orcidid><orcidid>https://orcid.org/0000-0001-8350-712X</orcidid><orcidid>https://orcid.org/0000-0003-0440-8719</orcidid><orcidid>https://orcid.org/0000-0001-6551-7439</orcidid><orcidid>https://orcid.org/0000-0003-0199-6930</orcidid><orcidid>https://orcid.org/0000-0003-0950-7433</orcidid><orcidid>https://orcid.org/000000018350712X</orcidid><orcidid>https://orcid.org/0000000245486783</orcidid><orcidid>https://orcid.org/0000000309507433</orcidid><orcidid>https://orcid.org/0000000301996930</orcidid><orcidid>https://orcid.org/0000000304408719</orcidid><orcidid>https://orcid.org/0000000165517439</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-06, Vol.133 (24), p.245903 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2829915190 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Bayesian analysis Calibration Compressive strength CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Cross correlation ENGINEERING Gas guns Inference Kinetics Model forms Phase transitions |
title | Inference of strength and phase transition kinetics in dynamically-compressed tin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20of%20strength%20and%20phase%20transition%20kinetics%20in%20dynamically-compressed%20tin&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Schill,%20W.%20J.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2023-06-28&rft.volume=133&rft.issue=24&rft.spage=245903&rft.pages=245903-&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0150749&rft_dat=%3Cproquest_osti_%3E2829915190%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-ba0fae9da289d51f25c4655696b1c2700ffd50fde29b3c55551b0b60b6a60463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829915190&rft_id=info:pmid/&rfr_iscdi=true |