Loading…

Inference of strength and phase transition kinetics in dynamically-compressed tin

Dynamic compression experiments in condensed matter are of interest in part because they provide opportunities to examine material response under extreme conditions; however, the inference of material behavior from dynamic experiments is challenging in the presence of phase transitions exhibiting ki...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2023-06, Vol.133 (24), p.245903
Main Authors: Schill, W. J., Schmidt, K. L., Austin, R. A., Anderson, W. W., Belof, J. L., Brown, J. L., Barton, N. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-ba0fae9da289d51f25c4655696b1c2700ffd50fde29b3c55551b0b60b6a60463
container_end_page
container_issue 24
container_start_page 245903
container_title Journal of applied physics
container_volume 133
creator Schill, W. J.
Schmidt, K. L.
Austin, R. A.
Anderson, W. W.
Belof, J. L.
Brown, J. L.
Barton, N. R.
description Dynamic compression experiments in condensed matter are of interest in part because they provide opportunities to examine material response under extreme conditions; however, the inference of material behavior from dynamic experiments is challenging in the presence of phase transitions exhibiting kinetic processes. Demonstrating an approach to quantitative interpretation of such dynamic experiments, we present a Bayesian model calibration of strength and phase transformation parameters to data drawn from pulsed power and gas gun shot experiments. The posterior predictions of the Bayesian model capture the experimental measurements and account for the various uncertainties in the experimental configurations. This holistic approach to model calibration utilizing multiple types of experimental data identifies important cross correlations among kinetics, strength, and the phase boundary. Improved insight into potential sources of current model form error is provided by comparing the differences between calibrations against different subsets of the experimental data.
doi_str_mv 10.1063/5.0150749
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2829915190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829915190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-ba0fae9da289d51f25c4655696b1c2700ffd50fde29b3c55551b0b60b6a60463</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q9KSwdZLd7G6OUvwoFEToPWTzYVPbZE1Sof_eLSt4NwxkDg8zw4vQNYEZgbp8YDMgDJqKn6AJgZYXDWNwiiYAlBQtb_g5ukhpA0BIW_IJel94a6LxyuBgccpD-5HXWHqN-7VMBucofXLZBY8_nTfZqYSdx_rg5c4pud0eChV2fTQpGY2z85fozMptMle__xStnp9W89di-faymD8uC1WSKhedBCsN15K2XDNiKVNVzVjN644o2gBYqxlYbSjvSsWGRzro6qFkDVVdTtHNODak7ERSLhu1VsF7o7KgFKqqpgO6HVEfw9fepCw2YR_9cJagLeWcMMJhUHejUjGkFI0VfXQ7GQ-CgDimKpj4TXWw96M9bpTHWP6Hv0P8g6LXtvwB38qFWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829915190</pqid></control><display><type>article</type><title>Inference of strength and phase transition kinetics in dynamically-compressed tin</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Schill, W. J. ; Schmidt, K. L. ; Austin, R. A. ; Anderson, W. W. ; Belof, J. L. ; Brown, J. L. ; Barton, N. R.</creator><creatorcontrib>Schill, W. J. ; Schmidt, K. L. ; Austin, R. A. ; Anderson, W. W. ; Belof, J. L. ; Brown, J. L. ; Barton, N. R. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Dynamic compression experiments in condensed matter are of interest in part because they provide opportunities to examine material response under extreme conditions; however, the inference of material behavior from dynamic experiments is challenging in the presence of phase transitions exhibiting kinetic processes. Demonstrating an approach to quantitative interpretation of such dynamic experiments, we present a Bayesian model calibration of strength and phase transformation parameters to data drawn from pulsed power and gas gun shot experiments. The posterior predictions of the Bayesian model capture the experimental measurements and account for the various uncertainties in the experimental configurations. This holistic approach to model calibration utilizing multiple types of experimental data identifies important cross correlations among kinetics, strength, and the phase boundary. Improved insight into potential sources of current model form error is provided by comparing the differences between calibrations against different subsets of the experimental data.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0150749</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bayesian analysis ; Calibration ; Compressive strength ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Cross correlation ; ENGINEERING ; Gas guns ; Inference ; Kinetics ; Model forms ; Phase transitions</subject><ispartof>Journal of applied physics, 2023-06, Vol.133 (24), p.245903</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-ba0fae9da289d51f25c4655696b1c2700ffd50fde29b3c55551b0b60b6a60463</cites><orcidid>0000-0002-4548-6783 ; 0000-0001-8350-712X ; 0000-0003-0440-8719 ; 0000-0001-6551-7439 ; 0000-0003-0199-6930 ; 0000-0003-0950-7433 ; 000000018350712X ; 0000000245486783 ; 0000000309507433 ; 0000000301996930 ; 0000000304408719 ; 0000000165517439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2204462$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schill, W. J.</creatorcontrib><creatorcontrib>Schmidt, K. L.</creatorcontrib><creatorcontrib>Austin, R. A.</creatorcontrib><creatorcontrib>Anderson, W. W.</creatorcontrib><creatorcontrib>Belof, J. L.</creatorcontrib><creatorcontrib>Brown, J. L.</creatorcontrib><creatorcontrib>Barton, N. R.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Inference of strength and phase transition kinetics in dynamically-compressed tin</title><title>Journal of applied physics</title><description>Dynamic compression experiments in condensed matter are of interest in part because they provide opportunities to examine material response under extreme conditions; however, the inference of material behavior from dynamic experiments is challenging in the presence of phase transitions exhibiting kinetic processes. Demonstrating an approach to quantitative interpretation of such dynamic experiments, we present a Bayesian model calibration of strength and phase transformation parameters to data drawn from pulsed power and gas gun shot experiments. The posterior predictions of the Bayesian model capture the experimental measurements and account for the various uncertainties in the experimental configurations. This holistic approach to model calibration utilizing multiple types of experimental data identifies important cross correlations among kinetics, strength, and the phase boundary. Improved insight into potential sources of current model form error is provided by comparing the differences between calibrations against different subsets of the experimental data.</description><subject>Applied physics</subject><subject>Bayesian analysis</subject><subject>Calibration</subject><subject>Compressive strength</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Cross correlation</subject><subject>ENGINEERING</subject><subject>Gas guns</subject><subject>Inference</subject><subject>Kinetics</subject><subject>Model forms</subject><subject>Phase transitions</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q9KSwdZLd7G6OUvwoFEToPWTzYVPbZE1Sof_eLSt4NwxkDg8zw4vQNYEZgbp8YDMgDJqKn6AJgZYXDWNwiiYAlBQtb_g5ukhpA0BIW_IJel94a6LxyuBgccpD-5HXWHqN-7VMBucofXLZBY8_nTfZqYSdx_rg5c4pud0eChV2fTQpGY2z85fozMptMle__xStnp9W89di-faymD8uC1WSKhedBCsN15K2XDNiKVNVzVjN644o2gBYqxlYbSjvSsWGRzro6qFkDVVdTtHNODak7ERSLhu1VsF7o7KgFKqqpgO6HVEfw9fepCw2YR_9cJagLeWcMMJhUHejUjGkFI0VfXQ7GQ-CgDimKpj4TXWw96M9bpTHWP6Hv0P8g6LXtvwB38qFWg</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Schill, W. J.</creator><creator>Schmidt, K. L.</creator><creator>Austin, R. A.</creator><creator>Anderson, W. W.</creator><creator>Belof, J. L.</creator><creator>Brown, J. L.</creator><creator>Barton, N. R.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4548-6783</orcidid><orcidid>https://orcid.org/0000-0001-8350-712X</orcidid><orcidid>https://orcid.org/0000-0003-0440-8719</orcidid><orcidid>https://orcid.org/0000-0001-6551-7439</orcidid><orcidid>https://orcid.org/0000-0003-0199-6930</orcidid><orcidid>https://orcid.org/0000-0003-0950-7433</orcidid><orcidid>https://orcid.org/000000018350712X</orcidid><orcidid>https://orcid.org/0000000245486783</orcidid><orcidid>https://orcid.org/0000000309507433</orcidid><orcidid>https://orcid.org/0000000301996930</orcidid><orcidid>https://orcid.org/0000000304408719</orcidid><orcidid>https://orcid.org/0000000165517439</orcidid></search><sort><creationdate>20230628</creationdate><title>Inference of strength and phase transition kinetics in dynamically-compressed tin</title><author>Schill, W. J. ; Schmidt, K. L. ; Austin, R. A. ; Anderson, W. W. ; Belof, J. L. ; Brown, J. L. ; Barton, N. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-ba0fae9da289d51f25c4655696b1c2700ffd50fde29b3c55551b0b60b6a60463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Bayesian analysis</topic><topic>Calibration</topic><topic>Compressive strength</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Cross correlation</topic><topic>ENGINEERING</topic><topic>Gas guns</topic><topic>Inference</topic><topic>Kinetics</topic><topic>Model forms</topic><topic>Phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schill, W. J.</creatorcontrib><creatorcontrib>Schmidt, K. L.</creatorcontrib><creatorcontrib>Austin, R. A.</creatorcontrib><creatorcontrib>Anderson, W. W.</creatorcontrib><creatorcontrib>Belof, J. L.</creatorcontrib><creatorcontrib>Brown, J. L.</creatorcontrib><creatorcontrib>Barton, N. R.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schill, W. J.</au><au>Schmidt, K. L.</au><au>Austin, R. A.</au><au>Anderson, W. W.</au><au>Belof, J. L.</au><au>Brown, J. L.</au><au>Barton, N. R.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference of strength and phase transition kinetics in dynamically-compressed tin</atitle><jtitle>Journal of applied physics</jtitle><date>2023-06-28</date><risdate>2023</risdate><volume>133</volume><issue>24</issue><spage>245903</spage><pages>245903-</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Dynamic compression experiments in condensed matter are of interest in part because they provide opportunities to examine material response under extreme conditions; however, the inference of material behavior from dynamic experiments is challenging in the presence of phase transitions exhibiting kinetic processes. Demonstrating an approach to quantitative interpretation of such dynamic experiments, we present a Bayesian model calibration of strength and phase transformation parameters to data drawn from pulsed power and gas gun shot experiments. The posterior predictions of the Bayesian model capture the experimental measurements and account for the various uncertainties in the experimental configurations. This holistic approach to model calibration utilizing multiple types of experimental data identifies important cross correlations among kinetics, strength, and the phase boundary. Improved insight into potential sources of current model form error is provided by comparing the differences between calibrations against different subsets of the experimental data.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0150749</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4548-6783</orcidid><orcidid>https://orcid.org/0000-0001-8350-712X</orcidid><orcidid>https://orcid.org/0000-0003-0440-8719</orcidid><orcidid>https://orcid.org/0000-0001-6551-7439</orcidid><orcidid>https://orcid.org/0000-0003-0199-6930</orcidid><orcidid>https://orcid.org/0000-0003-0950-7433</orcidid><orcidid>https://orcid.org/000000018350712X</orcidid><orcidid>https://orcid.org/0000000245486783</orcidid><orcidid>https://orcid.org/0000000309507433</orcidid><orcidid>https://orcid.org/0000000301996930</orcidid><orcidid>https://orcid.org/0000000304408719</orcidid><orcidid>https://orcid.org/0000000165517439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-06, Vol.133 (24), p.245903
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2829915190
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Bayesian analysis
Calibration
Compressive strength
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Cross correlation
ENGINEERING
Gas guns
Inference
Kinetics
Model forms
Phase transitions
title Inference of strength and phase transition kinetics in dynamically-compressed tin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20of%20strength%20and%20phase%20transition%20kinetics%20in%20dynamically-compressed%20tin&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Schill,%20W.%20J.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2023-06-28&rft.volume=133&rft.issue=24&rft.spage=245903&rft.pages=245903-&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0150749&rft_dat=%3Cproquest_osti_%3E2829915190%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-ba0fae9da289d51f25c4655696b1c2700ffd50fde29b3c55551b0b60b6a60463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829915190&rft_id=info:pmid/&rfr_iscdi=true