Loading…
Synthesis of ternary photocatalysts BiVO4/Ag/black phosphorene for the degradation of dyes and pharmaceuticals
Under UV and visible light irradiation, semiconductive photocatalysis is showing a tendency for disinfection and mineralization of organic molecules and other dangerous contaminants. Some heavy metals and refractive organic molecules are not transferred to other phases, making mineralization difficu...
Saved in:
Published in: | Applied nanoscience 2023-08, Vol.13 (8), p.5501-5507 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Under UV and visible light irradiation, semiconductive photocatalysis is showing a tendency for disinfection and mineralization of organic molecules and other dangerous contaminants. Some heavy metals and refractive organic molecules are not transferred to other phases, making mineralization difficult. The hydrothermal technique is used to make bismuth vanadate and a composite of bismuth vanadate with silver and black phosphorene in this research. The concentration of black phosphorene is varied from 1 to 3%. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy, and ultraviolet (UV) spectroscopy is used to investigate the morphological, structural, and optical features of the manufactured sample. The photocatalytic degradation of contaminants is accomplished by the process of photocatalysis. Methylene blue (MB) is a target pollutant for photocatalytic degradation in this work. The BiVO
4
/Ag/black phosphorene 3% composite degrades 99% of MB in 70 min. |
---|---|
ISSN: | 2190-5509 2190-5517 |
DOI: | 10.1007/s13204-023-02762-0 |