Loading…

Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells

GaSb grown on GaAs through interfacial misfit (IMF) arrays grown via molecular beam epitaxy has been heavily studied; there is limited research, however, on IMF growth through metal-organic vapor phase epitaxy. To demonstrate viability for integration in a multijunction solar cell for terrestrial us...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2023-06, Vol.133 (24)
Main Authors: Kessler-Lewis, Emily S., Polly, Stephen J., Nelson, George T., Slocum, Michael A., Pokharel, Nikhil, Ahrenkiel, Phil, Hubbard, Seth M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-a26064e9b575883705fc0f96fbf2e9d26d8138f2f67350dbf92fa1f052aba6373
container_end_page
container_issue 24
container_start_page
container_title Journal of applied physics
container_volume 133
creator Kessler-Lewis, Emily S.
Polly, Stephen J.
Nelson, George T.
Slocum, Michael A.
Pokharel, Nikhil
Ahrenkiel, Phil
Hubbard, Seth M.
description GaSb grown on GaAs through interfacial misfit (IMF) arrays grown via molecular beam epitaxy has been heavily studied; there is limited research, however, on IMF growth through metal-organic vapor phase epitaxy. To demonstrate viability for integration in a multijunction solar cell for terrestrial use, it is imperative to demonstrate high quality GaSb grown on GaAs through metal-organic vapor phase epitaxy. The preferred gallium precursors for n-type and p-type GaSb for longest minority carrier diffusion length were determined to be trimethylgallium and triethylgallium, respectively. A heteroepitaxial GaSb-on-GaAs device attained an open-circuit voltage of 190 mV and an efficiency of 2.2%. Extracted threading dislocation density from the minority carrier lifetime for the heteroepitaxial GaSb-on-GaAs device was determined to be 7.5 × 10 6 cm − 2. In a modeled multijunction solar cell, this device attributes to an overall efficiency of 33.1% under AM1.5g illumination.
doi_str_mv 10.1063/5.0141163
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2830429384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830429384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-a26064e9b575883705fc0f96fbf2e9d26d8138f2f67350dbf92fa1f052aba6373</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYepNMMsmy1LYKlQr-bENmJlemTCc1mVZ8eysV3Ls6m49z4BByyWDEQIlbOQKWM6bEERkw0CYrpIRjMgDgLNOmMKfkLKUVAGNamAGZ3fmdb8Nm7bueBqSPy7enKX2P4bOjc_dcZqHL5m6caNP1PqKrGtfSdZOw6WkKrYu08m2bzskJujb5i98cktfZ9GVyny2W84fJeJFVXBd95rgClXtTykJqLQqQWAEahSVyb2quas2ERo6qEBLqEg1HxxAkd6VTohBDcnXo3cTwsfWpt6uwjd1-0nItIOdG6Hyvrg-qiiGl6NFuYrN28csysD83WWl_b9rbm4NNVdO7vgnd__AuxD9oNzWKb1VYc_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830429384</pqid></control><display><type>article</type><title>Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kessler-Lewis, Emily S. ; Polly, Stephen J. ; Nelson, George T. ; Slocum, Michael A. ; Pokharel, Nikhil ; Ahrenkiel, Phil ; Hubbard, Seth M.</creator><creatorcontrib>Kessler-Lewis, Emily S. ; Polly, Stephen J. ; Nelson, George T. ; Slocum, Michael A. ; Pokharel, Nikhil ; Ahrenkiel, Phil ; Hubbard, Seth M.</creatorcontrib><description>GaSb grown on GaAs through interfacial misfit (IMF) arrays grown via molecular beam epitaxy has been heavily studied; there is limited research, however, on IMF growth through metal-organic vapor phase epitaxy. To demonstrate viability for integration in a multijunction solar cell for terrestrial use, it is imperative to demonstrate high quality GaSb grown on GaAs through metal-organic vapor phase epitaxy. The preferred gallium precursors for n-type and p-type GaSb for longest minority carrier diffusion length were determined to be trimethylgallium and triethylgallium, respectively. A heteroepitaxial GaSb-on-GaAs device attained an open-circuit voltage of 190 mV and an efficiency of 2.2%. Extracted threading dislocation density from the minority carrier lifetime for the heteroepitaxial GaSb-on-GaAs device was determined to be 7.5 × 10 6 cm − 2. In a modeled multijunction solar cell, this device attributes to an overall efficiency of 33.1% under AM1.5g illumination.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0141163</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carrier lifetime ; Diffusion length ; Dislocation density ; Epitaxial growth ; Gallium antimonides ; Gallium arsenide ; Minority carriers ; Molecular beam epitaxy ; Open circuit voltage ; Photovoltaic cells ; Solar cells ; Threading dislocations ; Vapor phase epitaxy ; Vapor phases</subject><ispartof>Journal of applied physics, 2023-06, Vol.133 (24)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-a26064e9b575883705fc0f96fbf2e9d26d8138f2f67350dbf92fa1f052aba6373</cites><orcidid>0000-0002-7563-6738 ; 0000-0002-0434-8632 ; 0000-0002-5393-7214 ; 0000-0001-9239-2010 ; 0000-0001-7661-4090 ; 0000-0001-6022-5031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kessler-Lewis, Emily S.</creatorcontrib><creatorcontrib>Polly, Stephen J.</creatorcontrib><creatorcontrib>Nelson, George T.</creatorcontrib><creatorcontrib>Slocum, Michael A.</creatorcontrib><creatorcontrib>Pokharel, Nikhil</creatorcontrib><creatorcontrib>Ahrenkiel, Phil</creatorcontrib><creatorcontrib>Hubbard, Seth M.</creatorcontrib><title>Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells</title><title>Journal of applied physics</title><description>GaSb grown on GaAs through interfacial misfit (IMF) arrays grown via molecular beam epitaxy has been heavily studied; there is limited research, however, on IMF growth through metal-organic vapor phase epitaxy. To demonstrate viability for integration in a multijunction solar cell for terrestrial use, it is imperative to demonstrate high quality GaSb grown on GaAs through metal-organic vapor phase epitaxy. The preferred gallium precursors for n-type and p-type GaSb for longest minority carrier diffusion length were determined to be trimethylgallium and triethylgallium, respectively. A heteroepitaxial GaSb-on-GaAs device attained an open-circuit voltage of 190 mV and an efficiency of 2.2%. Extracted threading dislocation density from the minority carrier lifetime for the heteroepitaxial GaSb-on-GaAs device was determined to be 7.5 × 10 6 cm − 2. In a modeled multijunction solar cell, this device attributes to an overall efficiency of 33.1% under AM1.5g illumination.</description><subject>Applied physics</subject><subject>Carrier lifetime</subject><subject>Diffusion length</subject><subject>Dislocation density</subject><subject>Epitaxial growth</subject><subject>Gallium antimonides</subject><subject>Gallium arsenide</subject><subject>Minority carriers</subject><subject>Molecular beam epitaxy</subject><subject>Open circuit voltage</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Threading dislocations</subject><subject>Vapor phase epitaxy</subject><subject>Vapor phases</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYepNMMsmy1LYKlQr-bENmJlemTCc1mVZ8eysV3Ls6m49z4BByyWDEQIlbOQKWM6bEERkw0CYrpIRjMgDgLNOmMKfkLKUVAGNamAGZ3fmdb8Nm7bueBqSPy7enKX2P4bOjc_dcZqHL5m6caNP1PqKrGtfSdZOw6WkKrYu08m2bzskJujb5i98cktfZ9GVyny2W84fJeJFVXBd95rgClXtTykJqLQqQWAEahSVyb2quas2ERo6qEBLqEg1HxxAkd6VTohBDcnXo3cTwsfWpt6uwjd1-0nItIOdG6Hyvrg-qiiGl6NFuYrN28csysD83WWl_b9rbm4NNVdO7vgnd__AuxD9oNzWKb1VYc_U</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Kessler-Lewis, Emily S.</creator><creator>Polly, Stephen J.</creator><creator>Nelson, George T.</creator><creator>Slocum, Michael A.</creator><creator>Pokharel, Nikhil</creator><creator>Ahrenkiel, Phil</creator><creator>Hubbard, Seth M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7563-6738</orcidid><orcidid>https://orcid.org/0000-0002-0434-8632</orcidid><orcidid>https://orcid.org/0000-0002-5393-7214</orcidid><orcidid>https://orcid.org/0000-0001-9239-2010</orcidid><orcidid>https://orcid.org/0000-0001-7661-4090</orcidid><orcidid>https://orcid.org/0000-0001-6022-5031</orcidid></search><sort><creationdate>20230628</creationdate><title>Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells</title><author>Kessler-Lewis, Emily S. ; Polly, Stephen J. ; Nelson, George T. ; Slocum, Michael A. ; Pokharel, Nikhil ; Ahrenkiel, Phil ; Hubbard, Seth M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-a26064e9b575883705fc0f96fbf2e9d26d8138f2f67350dbf92fa1f052aba6373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Carrier lifetime</topic><topic>Diffusion length</topic><topic>Dislocation density</topic><topic>Epitaxial growth</topic><topic>Gallium antimonides</topic><topic>Gallium arsenide</topic><topic>Minority carriers</topic><topic>Molecular beam epitaxy</topic><topic>Open circuit voltage</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Threading dislocations</topic><topic>Vapor phase epitaxy</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessler-Lewis, Emily S.</creatorcontrib><creatorcontrib>Polly, Stephen J.</creatorcontrib><creatorcontrib>Nelson, George T.</creatorcontrib><creatorcontrib>Slocum, Michael A.</creatorcontrib><creatorcontrib>Pokharel, Nikhil</creatorcontrib><creatorcontrib>Ahrenkiel, Phil</creatorcontrib><creatorcontrib>Hubbard, Seth M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler-Lewis, Emily S.</au><au>Polly, Stephen J.</au><au>Nelson, George T.</au><au>Slocum, Michael A.</au><au>Pokharel, Nikhil</au><au>Ahrenkiel, Phil</au><au>Hubbard, Seth M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells</atitle><jtitle>Journal of applied physics</jtitle><date>2023-06-28</date><risdate>2023</risdate><volume>133</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>GaSb grown on GaAs through interfacial misfit (IMF) arrays grown via molecular beam epitaxy has been heavily studied; there is limited research, however, on IMF growth through metal-organic vapor phase epitaxy. To demonstrate viability for integration in a multijunction solar cell for terrestrial use, it is imperative to demonstrate high quality GaSb grown on GaAs through metal-organic vapor phase epitaxy. The preferred gallium precursors for n-type and p-type GaSb for longest minority carrier diffusion length were determined to be trimethylgallium and triethylgallium, respectively. A heteroepitaxial GaSb-on-GaAs device attained an open-circuit voltage of 190 mV and an efficiency of 2.2%. Extracted threading dislocation density from the minority carrier lifetime for the heteroepitaxial GaSb-on-GaAs device was determined to be 7.5 × 10 6 cm − 2. In a modeled multijunction solar cell, this device attributes to an overall efficiency of 33.1% under AM1.5g illumination.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0141163</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7563-6738</orcidid><orcidid>https://orcid.org/0000-0002-0434-8632</orcidid><orcidid>https://orcid.org/0000-0002-5393-7214</orcidid><orcidid>https://orcid.org/0000-0001-9239-2010</orcidid><orcidid>https://orcid.org/0000-0001-7661-4090</orcidid><orcidid>https://orcid.org/0000-0001-6022-5031</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-06, Vol.133 (24)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2830429384
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Carrier lifetime
Diffusion length
Dislocation density
Epitaxial growth
Gallium antimonides
Gallium arsenide
Minority carriers
Molecular beam epitaxy
Open circuit voltage
Photovoltaic cells
Solar cells
Threading dislocations
Vapor phase epitaxy
Vapor phases
title Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20MOVPE%20grown%20GaSb-on-GaAs%20interfacial%20misfit%20solar%20cells&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kessler-Lewis,%20Emily%20S.&rft.date=2023-06-28&rft.volume=133&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0141163&rft_dat=%3Cproquest_cross%3E2830429384%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-a26064e9b575883705fc0f96fbf2e9d26d8138f2f67350dbf92fa1f052aba6373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2830429384&rft_id=info:pmid/&rfr_iscdi=true