Loading…
Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells
GaSb grown on GaAs through interfacial misfit (IMF) arrays grown via molecular beam epitaxy has been heavily studied; there is limited research, however, on IMF growth through metal-organic vapor phase epitaxy. To demonstrate viability for integration in a multijunction solar cell for terrestrial us...
Saved in:
Published in: | Journal of applied physics 2023-06, Vol.133 (24) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-a26064e9b575883705fc0f96fbf2e9d26d8138f2f67350dbf92fa1f052aba6373 |
container_end_page | |
container_issue | 24 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 133 |
creator | Kessler-Lewis, Emily S. Polly, Stephen J. Nelson, George T. Slocum, Michael A. Pokharel, Nikhil Ahrenkiel, Phil Hubbard, Seth M. |
description | GaSb grown on GaAs through interfacial misfit (IMF) arrays grown via molecular beam epitaxy has been heavily studied; there is limited research, however, on IMF growth through metal-organic vapor phase epitaxy. To demonstrate viability for integration in a multijunction solar cell for terrestrial use, it is imperative to demonstrate high quality GaSb grown on GaAs through metal-organic vapor phase epitaxy. The preferred gallium precursors for n-type and p-type GaSb for longest minority carrier diffusion length were determined to be trimethylgallium and triethylgallium, respectively. A heteroepitaxial GaSb-on-GaAs device attained an open-circuit voltage of 190 mV and an efficiency of 2.2%. Extracted threading dislocation density from the minority carrier lifetime for the heteroepitaxial GaSb-on-GaAs device was determined to be
7.5
×
10
6
cm
−
2. In a modeled multijunction solar cell, this device attributes to an overall efficiency of 33.1% under AM1.5g illumination. |
doi_str_mv | 10.1063/5.0141163 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2830429384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830429384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-a26064e9b575883705fc0f96fbf2e9d26d8138f2f67350dbf92fa1f052aba6373</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYepNMMsmy1LYKlQr-bENmJlemTCc1mVZ8eysV3Ls6m49z4BByyWDEQIlbOQKWM6bEERkw0CYrpIRjMgDgLNOmMKfkLKUVAGNamAGZ3fmdb8Nm7bueBqSPy7enKX2P4bOjc_dcZqHL5m6caNP1PqKrGtfSdZOw6WkKrYu08m2bzskJujb5i98cktfZ9GVyny2W84fJeJFVXBd95rgClXtTykJqLQqQWAEahSVyb2quas2ERo6qEBLqEg1HxxAkd6VTohBDcnXo3cTwsfWpt6uwjd1-0nItIOdG6Hyvrg-qiiGl6NFuYrN28csysD83WWl_b9rbm4NNVdO7vgnd__AuxD9oNzWKb1VYc_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830429384</pqid></control><display><type>article</type><title>Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kessler-Lewis, Emily S. ; Polly, Stephen J. ; Nelson, George T. ; Slocum, Michael A. ; Pokharel, Nikhil ; Ahrenkiel, Phil ; Hubbard, Seth M.</creator><creatorcontrib>Kessler-Lewis, Emily S. ; Polly, Stephen J. ; Nelson, George T. ; Slocum, Michael A. ; Pokharel, Nikhil ; Ahrenkiel, Phil ; Hubbard, Seth M.</creatorcontrib><description>GaSb grown on GaAs through interfacial misfit (IMF) arrays grown via molecular beam epitaxy has been heavily studied; there is limited research, however, on IMF growth through metal-organic vapor phase epitaxy. To demonstrate viability for integration in a multijunction solar cell for terrestrial use, it is imperative to demonstrate high quality GaSb grown on GaAs through metal-organic vapor phase epitaxy. The preferred gallium precursors for n-type and p-type GaSb for longest minority carrier diffusion length were determined to be trimethylgallium and triethylgallium, respectively. A heteroepitaxial GaSb-on-GaAs device attained an open-circuit voltage of 190 mV and an efficiency of 2.2%. Extracted threading dislocation density from the minority carrier lifetime for the heteroepitaxial GaSb-on-GaAs device was determined to be
7.5
×
10
6
cm
−
2. In a modeled multijunction solar cell, this device attributes to an overall efficiency of 33.1% under AM1.5g illumination.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0141163</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carrier lifetime ; Diffusion length ; Dislocation density ; Epitaxial growth ; Gallium antimonides ; Gallium arsenide ; Minority carriers ; Molecular beam epitaxy ; Open circuit voltage ; Photovoltaic cells ; Solar cells ; Threading dislocations ; Vapor phase epitaxy ; Vapor phases</subject><ispartof>Journal of applied physics, 2023-06, Vol.133 (24)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-a26064e9b575883705fc0f96fbf2e9d26d8138f2f67350dbf92fa1f052aba6373</cites><orcidid>0000-0002-7563-6738 ; 0000-0002-0434-8632 ; 0000-0002-5393-7214 ; 0000-0001-9239-2010 ; 0000-0001-7661-4090 ; 0000-0001-6022-5031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kessler-Lewis, Emily S.</creatorcontrib><creatorcontrib>Polly, Stephen J.</creatorcontrib><creatorcontrib>Nelson, George T.</creatorcontrib><creatorcontrib>Slocum, Michael A.</creatorcontrib><creatorcontrib>Pokharel, Nikhil</creatorcontrib><creatorcontrib>Ahrenkiel, Phil</creatorcontrib><creatorcontrib>Hubbard, Seth M.</creatorcontrib><title>Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells</title><title>Journal of applied physics</title><description>GaSb grown on GaAs through interfacial misfit (IMF) arrays grown via molecular beam epitaxy has been heavily studied; there is limited research, however, on IMF growth through metal-organic vapor phase epitaxy. To demonstrate viability for integration in a multijunction solar cell for terrestrial use, it is imperative to demonstrate high quality GaSb grown on GaAs through metal-organic vapor phase epitaxy. The preferred gallium precursors for n-type and p-type GaSb for longest minority carrier diffusion length were determined to be trimethylgallium and triethylgallium, respectively. A heteroepitaxial GaSb-on-GaAs device attained an open-circuit voltage of 190 mV and an efficiency of 2.2%. Extracted threading dislocation density from the minority carrier lifetime for the heteroepitaxial GaSb-on-GaAs device was determined to be
7.5
×
10
6
cm
−
2. In a modeled multijunction solar cell, this device attributes to an overall efficiency of 33.1% under AM1.5g illumination.</description><subject>Applied physics</subject><subject>Carrier lifetime</subject><subject>Diffusion length</subject><subject>Dislocation density</subject><subject>Epitaxial growth</subject><subject>Gallium antimonides</subject><subject>Gallium arsenide</subject><subject>Minority carriers</subject><subject>Molecular beam epitaxy</subject><subject>Open circuit voltage</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Threading dislocations</subject><subject>Vapor phase epitaxy</subject><subject>Vapor phases</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYepNMMsmy1LYKlQr-bENmJlemTCc1mVZ8eysV3Ls6m49z4BByyWDEQIlbOQKWM6bEERkw0CYrpIRjMgDgLNOmMKfkLKUVAGNamAGZ3fmdb8Nm7bueBqSPy7enKX2P4bOjc_dcZqHL5m6caNP1PqKrGtfSdZOw6WkKrYu08m2bzskJujb5i98cktfZ9GVyny2W84fJeJFVXBd95rgClXtTykJqLQqQWAEahSVyb2quas2ERo6qEBLqEg1HxxAkd6VTohBDcnXo3cTwsfWpt6uwjd1-0nItIOdG6Hyvrg-qiiGl6NFuYrN28csysD83WWl_b9rbm4NNVdO7vgnd__AuxD9oNzWKb1VYc_U</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Kessler-Lewis, Emily S.</creator><creator>Polly, Stephen J.</creator><creator>Nelson, George T.</creator><creator>Slocum, Michael A.</creator><creator>Pokharel, Nikhil</creator><creator>Ahrenkiel, Phil</creator><creator>Hubbard, Seth M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7563-6738</orcidid><orcidid>https://orcid.org/0000-0002-0434-8632</orcidid><orcidid>https://orcid.org/0000-0002-5393-7214</orcidid><orcidid>https://orcid.org/0000-0001-9239-2010</orcidid><orcidid>https://orcid.org/0000-0001-7661-4090</orcidid><orcidid>https://orcid.org/0000-0001-6022-5031</orcidid></search><sort><creationdate>20230628</creationdate><title>Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells</title><author>Kessler-Lewis, Emily S. ; Polly, Stephen J. ; Nelson, George T. ; Slocum, Michael A. ; Pokharel, Nikhil ; Ahrenkiel, Phil ; Hubbard, Seth M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-a26064e9b575883705fc0f96fbf2e9d26d8138f2f67350dbf92fa1f052aba6373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Carrier lifetime</topic><topic>Diffusion length</topic><topic>Dislocation density</topic><topic>Epitaxial growth</topic><topic>Gallium antimonides</topic><topic>Gallium arsenide</topic><topic>Minority carriers</topic><topic>Molecular beam epitaxy</topic><topic>Open circuit voltage</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Threading dislocations</topic><topic>Vapor phase epitaxy</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessler-Lewis, Emily S.</creatorcontrib><creatorcontrib>Polly, Stephen J.</creatorcontrib><creatorcontrib>Nelson, George T.</creatorcontrib><creatorcontrib>Slocum, Michael A.</creatorcontrib><creatorcontrib>Pokharel, Nikhil</creatorcontrib><creatorcontrib>Ahrenkiel, Phil</creatorcontrib><creatorcontrib>Hubbard, Seth M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler-Lewis, Emily S.</au><au>Polly, Stephen J.</au><au>Nelson, George T.</au><au>Slocum, Michael A.</au><au>Pokharel, Nikhil</au><au>Ahrenkiel, Phil</au><au>Hubbard, Seth M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells</atitle><jtitle>Journal of applied physics</jtitle><date>2023-06-28</date><risdate>2023</risdate><volume>133</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>GaSb grown on GaAs through interfacial misfit (IMF) arrays grown via molecular beam epitaxy has been heavily studied; there is limited research, however, on IMF growth through metal-organic vapor phase epitaxy. To demonstrate viability for integration in a multijunction solar cell for terrestrial use, it is imperative to demonstrate high quality GaSb grown on GaAs through metal-organic vapor phase epitaxy. The preferred gallium precursors for n-type and p-type GaSb for longest minority carrier diffusion length were determined to be trimethylgallium and triethylgallium, respectively. A heteroepitaxial GaSb-on-GaAs device attained an open-circuit voltage of 190 mV and an efficiency of 2.2%. Extracted threading dislocation density from the minority carrier lifetime for the heteroepitaxial GaSb-on-GaAs device was determined to be
7.5
×
10
6
cm
−
2. In a modeled multijunction solar cell, this device attributes to an overall efficiency of 33.1% under AM1.5g illumination.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0141163</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7563-6738</orcidid><orcidid>https://orcid.org/0000-0002-0434-8632</orcidid><orcidid>https://orcid.org/0000-0002-5393-7214</orcidid><orcidid>https://orcid.org/0000-0001-9239-2010</orcidid><orcidid>https://orcid.org/0000-0001-7661-4090</orcidid><orcidid>https://orcid.org/0000-0001-6022-5031</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-06, Vol.133 (24) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2830429384 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Carrier lifetime Diffusion length Dislocation density Epitaxial growth Gallium antimonides Gallium arsenide Minority carriers Molecular beam epitaxy Open circuit voltage Photovoltaic cells Solar cells Threading dislocations Vapor phase epitaxy Vapor phases |
title | Development of MOVPE grown GaSb-on-GaAs interfacial misfit solar cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20MOVPE%20grown%20GaSb-on-GaAs%20interfacial%20misfit%20solar%20cells&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kessler-Lewis,%20Emily%20S.&rft.date=2023-06-28&rft.volume=133&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0141163&rft_dat=%3Cproquest_cross%3E2830429384%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-a26064e9b575883705fc0f96fbf2e9d26d8138f2f67350dbf92fa1f052aba6373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2830429384&rft_id=info:pmid/&rfr_iscdi=true |