Loading…

Hedging portfolio for a market model of degenerate diffusions

We consider a semimartingale market model when the underlying diffusion has a singular volatility matrix and compute the hedging portfolio for a given payoff function. Recently, the representation problem for such degenerate diffusions as a stochastic integral with respect to a martingale has been c...

Full description

Saved in:
Bibliographic Details
Published in:Stochastics (Abingdon, Eng. : 2005) Eng. : 2005), 2023-08, Vol.95 (6), p.1022-1041
Main Authors: Çağlar, Mine, Demirel, İhsan, Üstünel, Ali Süleyman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c333t-11f1f1eb2ec1295b1ba94dc9477a7c159df8ca54b3663b9b30e419cbf68841d43
container_end_page 1041
container_issue 6
container_start_page 1022
container_title Stochastics (Abingdon, Eng. : 2005)
container_volume 95
creator Çağlar, Mine
Demirel, İhsan
Üstünel, Ali Süleyman
description We consider a semimartingale market model when the underlying diffusion has a singular volatility matrix and compute the hedging portfolio for a given payoff function. Recently, the representation problem for such degenerate diffusions as a stochastic integral with respect to a martingale has been completely settled. This representation and Malliavin calculus established further for the functionals of a degenerate diffusion process constitute the basis of the present work. Using the Clark-Hausmann-Bismut-Ocone type representation formula derived for these functionals, we prove a version of this formula under an equivalent martingale measure. This allows us to derive the hedging portfolio as a solution of a system of linear equations. The uniqueness of the solution is achieved by a projection idea that lies at the core of the martingale representation at the first place. We demonstrate the hedging strategy as explicitly as possible with some examples of the payoff function such as those used in exotic options, whose value at maturity depends on the prices over the entire time horizon.
doi_str_mv 10.1080/17442508.2022.2150082
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2830495808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830495808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-11f1f1eb2ec1295b1ba94dc9477a7c159df8ca54b3663b9b30e419cbf68841d43</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43jr52s0eBKWoFQpe9BzyWVK3m5pskf57t1Q9yhxmGN53hvdB6JrAjICEW9JwTgXIGQVKZ5QIAElP0OSwr6gg9enfDPIcXZSyBuCUMZigu4V3q9iv8DblIaQuJhxSxhpvdP7wA94k5zucAnZ-5Xuf9eCxiyHsSkx9uURnQXfFX_30KXp_enybL6rl6_PL_GFZWcbYUBESxvKGektoKwwxuuXOtrxpdGOJaF2QVgtuWF0z0xoGnpPWmlBLyYnjbIpujne3OX3ufBnUOu1yP75UVDLgrZAgR5U4qmxOpWQf1DbHMcdeEVAHUuqXlDqQUj-kRt_90Rf7MftGf6XcOTXofZdyyLq3sSj2_4lvrMFuqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830495808</pqid></control><display><type>article</type><title>Hedging portfolio for a market model of degenerate diffusions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Çağlar, Mine ; Demirel, İhsan ; Üstünel, Ali Süleyman</creator><creatorcontrib>Çağlar, Mine ; Demirel, İhsan ; Üstünel, Ali Süleyman</creatorcontrib><description>We consider a semimartingale market model when the underlying diffusion has a singular volatility matrix and compute the hedging portfolio for a given payoff function. Recently, the representation problem for such degenerate diffusions as a stochastic integral with respect to a martingale has been completely settled. This representation and Malliavin calculus established further for the functionals of a degenerate diffusion process constitute the basis of the present work. Using the Clark-Hausmann-Bismut-Ocone type representation formula derived for these functionals, we prove a version of this formula under an equivalent martingale measure. This allows us to derive the hedging portfolio as a solution of a system of linear equations. The uniqueness of the solution is achieved by a projection idea that lies at the core of the martingale representation at the first place. We demonstrate the hedging strategy as explicitly as possible with some examples of the payoff function such as those used in exotic options, whose value at maturity depends on the prices over the entire time horizon.</description><identifier>ISSN: 1744-2508</identifier><identifier>EISSN: 1744-2516</identifier><identifier>DOI: 10.1080/17442508.2022.2150082</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Clark-Ocone formula ; Degenerate diffusion ; exotic option ; Hedging ; Linear equations ; Malliavin calculus ; Martingales ; replicating portfolio ; Representations</subject><ispartof>Stochastics (Abingdon, Eng. : 2005), 2023-08, Vol.95 (6), p.1022-1041</ispartof><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c333t-11f1f1eb2ec1295b1ba94dc9477a7c159df8ca54b3663b9b30e419cbf68841d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Çağlar, Mine</creatorcontrib><creatorcontrib>Demirel, İhsan</creatorcontrib><creatorcontrib>Üstünel, Ali Süleyman</creatorcontrib><title>Hedging portfolio for a market model of degenerate diffusions</title><title>Stochastics (Abingdon, Eng. : 2005)</title><description>We consider a semimartingale market model when the underlying diffusion has a singular volatility matrix and compute the hedging portfolio for a given payoff function. Recently, the representation problem for such degenerate diffusions as a stochastic integral with respect to a martingale has been completely settled. This representation and Malliavin calculus established further for the functionals of a degenerate diffusion process constitute the basis of the present work. Using the Clark-Hausmann-Bismut-Ocone type representation formula derived for these functionals, we prove a version of this formula under an equivalent martingale measure. This allows us to derive the hedging portfolio as a solution of a system of linear equations. The uniqueness of the solution is achieved by a projection idea that lies at the core of the martingale representation at the first place. We demonstrate the hedging strategy as explicitly as possible with some examples of the payoff function such as those used in exotic options, whose value at maturity depends on the prices over the entire time horizon.</description><subject>Clark-Ocone formula</subject><subject>Degenerate diffusion</subject><subject>exotic option</subject><subject>Hedging</subject><subject>Linear equations</subject><subject>Malliavin calculus</subject><subject>Martingales</subject><subject>replicating portfolio</subject><subject>Representations</subject><issn>1744-2508</issn><issn>1744-2516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43jr52s0eBKWoFQpe9BzyWVK3m5pskf57t1Q9yhxmGN53hvdB6JrAjICEW9JwTgXIGQVKZ5QIAElP0OSwr6gg9enfDPIcXZSyBuCUMZigu4V3q9iv8DblIaQuJhxSxhpvdP7wA94k5zucAnZ-5Xuf9eCxiyHsSkx9uURnQXfFX_30KXp_enybL6rl6_PL_GFZWcbYUBESxvKGektoKwwxuuXOtrxpdGOJaF2QVgtuWF0z0xoGnpPWmlBLyYnjbIpujne3OX3ufBnUOu1yP75UVDLgrZAgR5U4qmxOpWQf1DbHMcdeEVAHUuqXlDqQUj-kRt_90Rf7MftGf6XcOTXofZdyyLq3sSj2_4lvrMFuqg</recordid><startdate>20230818</startdate><enddate>20230818</enddate><creator>Çağlar, Mine</creator><creator>Demirel, İhsan</creator><creator>Üstünel, Ali Süleyman</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230818</creationdate><title>Hedging portfolio for a market model of degenerate diffusions</title><author>Çağlar, Mine ; Demirel, İhsan ; Üstünel, Ali Süleyman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-11f1f1eb2ec1295b1ba94dc9477a7c159df8ca54b3663b9b30e419cbf68841d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clark-Ocone formula</topic><topic>Degenerate diffusion</topic><topic>exotic option</topic><topic>Hedging</topic><topic>Linear equations</topic><topic>Malliavin calculus</topic><topic>Martingales</topic><topic>replicating portfolio</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çağlar, Mine</creatorcontrib><creatorcontrib>Demirel, İhsan</creatorcontrib><creatorcontrib>Üstünel, Ali Süleyman</creatorcontrib><collection>CrossRef</collection><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çağlar, Mine</au><au>Demirel, İhsan</au><au>Üstünel, Ali Süleyman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hedging portfolio for a market model of degenerate diffusions</atitle><jtitle>Stochastics (Abingdon, Eng. : 2005)</jtitle><date>2023-08-18</date><risdate>2023</risdate><volume>95</volume><issue>6</issue><spage>1022</spage><epage>1041</epage><pages>1022-1041</pages><issn>1744-2508</issn><eissn>1744-2516</eissn><abstract>We consider a semimartingale market model when the underlying diffusion has a singular volatility matrix and compute the hedging portfolio for a given payoff function. Recently, the representation problem for such degenerate diffusions as a stochastic integral with respect to a martingale has been completely settled. This representation and Malliavin calculus established further for the functionals of a degenerate diffusion process constitute the basis of the present work. Using the Clark-Hausmann-Bismut-Ocone type representation formula derived for these functionals, we prove a version of this formula under an equivalent martingale measure. This allows us to derive the hedging portfolio as a solution of a system of linear equations. The uniqueness of the solution is achieved by a projection idea that lies at the core of the martingale representation at the first place. We demonstrate the hedging strategy as explicitly as possible with some examples of the payoff function such as those used in exotic options, whose value at maturity depends on the prices over the entire time horizon.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17442508.2022.2150082</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-2508
ispartof Stochastics (Abingdon, Eng. : 2005), 2023-08, Vol.95 (6), p.1022-1041
issn 1744-2508
1744-2516
language eng
recordid cdi_proquest_journals_2830495808
source Taylor and Francis Science and Technology Collection
subjects Clark-Ocone formula
Degenerate diffusion
exotic option
Hedging
Linear equations
Malliavin calculus
Martingales
replicating portfolio
Representations
title Hedging portfolio for a market model of degenerate diffusions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hedging%20portfolio%20for%20a%20market%20model%20of%20degenerate%20diffusions&rft.jtitle=Stochastics%20(Abingdon,%20Eng.%20:%202005)&rft.au=%C3%87a%C4%9Flar,%20Mine&rft.date=2023-08-18&rft.volume=95&rft.issue=6&rft.spage=1022&rft.epage=1041&rft.pages=1022-1041&rft.issn=1744-2508&rft.eissn=1744-2516&rft_id=info:doi/10.1080/17442508.2022.2150082&rft_dat=%3Cproquest_infor%3E2830495808%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-11f1f1eb2ec1295b1ba94dc9477a7c159df8ca54b3663b9b30e419cbf68841d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2830495808&rft_id=info:pmid/&rfr_iscdi=true