Loading…

Discovery, Mode of Action, Resistance Mechanisms, and Plan of Action for Sustainable Use of Group 14 Herbicides

Protoporphyrinogen oxidase (PPO)-inhibiting herbicides remain an important and useful chemistry 60 yr after their first introduction. In this review, based on topics introduced at the Weed Science Society of America 2021 symposium titled “A History, Overview, and Plan of Action on PPO Inhibiting Her...

Full description

Saved in:
Bibliographic Details
Published in:Weed science 2023-05, Vol.71 (3), p.173-188
Main Authors: Barker, Abigail L., Pawlak, John, Duke, Stephen O., Beffa, Roland, Tranel, Patrick J., Wuerffel, Joe, Young, Bryan, Porri, Aimone, Liebl, Rex, Aponte, Raphael, Findley, Douglas, Betz, Michael, Lerchl, Jens, Culpepper, Stanley, Bradley, Kevin, Dayan, Franck E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protoporphyrinogen oxidase (PPO)-inhibiting herbicides remain an important and useful chemistry 60 yr after their first introduction. In this review, based on topics introduced at the Weed Science Society of America 2021 symposium titled “A History, Overview, and Plan of Action on PPO Inhibiting Herbicides,” we discuss the current state of PPO-inhibiting herbicides. Renewed interest in the PPO-inhibiting herbicides in recent years, due to increased use and increased cases of resistance, has led to refinements in knowledge regarding the mechanism of action of PPO inhibitors. Herein we discuss the importance of the two isoforms of PPO in plants, compile a current knowledge of target-site resistance mechanisms, examine non–target site resistance cases, and review crop selectivity mechanisms. Consistent and reproducible greenhouse screening and target-site mutation assays are necessary to effectively study and compare PPO-inhibitor resistance cases. To this end, we cover best practices in screening to accurately identify resistance ratios and properly interpret common screens for point mutations. The future of effective and sustainable PPO-inhibitor use relies on development of new chemistries that maintain activity on resistant biotypes and the promotion of responsible stewardship of PPO inhibitors both new and old. We present the biorational design of the new PPO inhibitor trifludimoxazin to highlight the future of PPO-inhibitor development and discuss the elements of sustainable weed control programs using PPO inhibitors, as well as how responsible stewardship can be incentivized. The sustained use of PPO inhibitors in future agriculture relies on the effective and timely communication from mode of action and resistance research to agronomists, Extension workers, and farmers.
ISSN:0043-1745
1550-2759
DOI:10.1017/wsc.2023.15