Loading…
Sustainable Palm Tree Farming: Leveraging IoT and Multi-Modal Data for Early Detection and Mapping of Red Palm Weevil
The Red Palm Weevil (RPW) is a highly destructive insect causing economic losses and impacting palm tree farming worldwide. This paper proposes an innovative approach for sustainable palm tree farming by utilizing advanced technologies for the early detection and management of RPW. Our approach comb...
Saved in:
Published in: | arXiv.org 2023-06 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hajjaji, Yosra Ayyub Alzahem Boulila, Wadii Farah, Imed Riadh Koubaa, Anis |
description | The Red Palm Weevil (RPW) is a highly destructive insect causing economic losses and impacting palm tree farming worldwide. This paper proposes an innovative approach for sustainable palm tree farming by utilizing advanced technologies for the early detection and management of RPW. Our approach combines computer vision, deep learning (DL), the Internet of Things (IoT), and geospatial data to detect and classify RPW-infested palm trees effectively. The main phases include; (1) DL classification using sound data from IoT devices, (2) palm tree detection using YOLOv8 on UAV images, and (3) RPW mapping using geospatial data. Our custom DL model achieves 100% precision and recall in detecting and localizing infested palm trees. Integrating geospatial data enables the creation of a comprehensive RPW distribution map for efficient monitoring and targeted management strategies. This technology-driven approach benefits agricultural authorities, farmers, and researchers in managing RPW infestations and safeguarding palm tree plantations' productivity. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2831655289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831655289</sourcerecordid><originalsourceid>FETCH-proquest_journals_28316552893</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgKNp_uOC6UBOr1a0PFBRECy7lam9LSkxqHoJ_r6If4GoOzJlpsS4XYhhnI847LHKuTpKEjyc8TUWXhWNwHqXGiyLYo7pBbolghfYmdTWDLT3IYvVm2JgcUBewC8rLeGcKVLBAj1AaC0u06gkL8nT10uiviE3zGZoSDlR8309ED6n6rF2ichT9sscGq2U-X8eNNfdAzp9rE6x-V2eeieE4TXk2Ff9ZL1tMSrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831655289</pqid></control><display><type>article</type><title>Sustainable Palm Tree Farming: Leveraging IoT and Multi-Modal Data for Early Detection and Mapping of Red Palm Weevil</title><source>Publicly Available Content Database</source><creator>Hajjaji, Yosra ; Ayyub Alzahem ; Boulila, Wadii ; Farah, Imed Riadh ; Koubaa, Anis</creator><creatorcontrib>Hajjaji, Yosra ; Ayyub Alzahem ; Boulila, Wadii ; Farah, Imed Riadh ; Koubaa, Anis</creatorcontrib><description>The Red Palm Weevil (RPW) is a highly destructive insect causing economic losses and impacting palm tree farming worldwide. This paper proposes an innovative approach for sustainable palm tree farming by utilizing advanced technologies for the early detection and management of RPW. Our approach combines computer vision, deep learning (DL), the Internet of Things (IoT), and geospatial data to detect and classify RPW-infested palm trees effectively. The main phases include; (1) DL classification using sound data from IoT devices, (2) palm tree detection using YOLOv8 on UAV images, and (3) RPW mapping using geospatial data. Our custom DL model achieves 100% precision and recall in detecting and localizing infested palm trees. Integrating geospatial data enables the creation of a comprehensive RPW distribution map for efficient monitoring and targeted management strategies. This technology-driven approach benefits agricultural authorities, farmers, and researchers in managing RPW infestations and safeguarding palm tree plantations' productivity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer vision ; Economic impact ; Farming ; Insects ; Internet of Things ; Mapping ; Modal data ; Spatial data ; Unmanned aerial vehicles</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2831655289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Hajjaji, Yosra</creatorcontrib><creatorcontrib>Ayyub Alzahem</creatorcontrib><creatorcontrib>Boulila, Wadii</creatorcontrib><creatorcontrib>Farah, Imed Riadh</creatorcontrib><creatorcontrib>Koubaa, Anis</creatorcontrib><title>Sustainable Palm Tree Farming: Leveraging IoT and Multi-Modal Data for Early Detection and Mapping of Red Palm Weevil</title><title>arXiv.org</title><description>The Red Palm Weevil (RPW) is a highly destructive insect causing economic losses and impacting palm tree farming worldwide. This paper proposes an innovative approach for sustainable palm tree farming by utilizing advanced technologies for the early detection and management of RPW. Our approach combines computer vision, deep learning (DL), the Internet of Things (IoT), and geospatial data to detect and classify RPW-infested palm trees effectively. The main phases include; (1) DL classification using sound data from IoT devices, (2) palm tree detection using YOLOv8 on UAV images, and (3) RPW mapping using geospatial data. Our custom DL model achieves 100% precision and recall in detecting and localizing infested palm trees. Integrating geospatial data enables the creation of a comprehensive RPW distribution map for efficient monitoring and targeted management strategies. This technology-driven approach benefits agricultural authorities, farmers, and researchers in managing RPW infestations and safeguarding palm tree plantations' productivity.</description><subject>Computer vision</subject><subject>Economic impact</subject><subject>Farming</subject><subject>Insects</subject><subject>Internet of Things</subject><subject>Mapping</subject><subject>Modal data</subject><subject>Spatial data</subject><subject>Unmanned aerial vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAURIMgKNp_uOC6UBOr1a0PFBRECy7lam9LSkxqHoJ_r6If4GoOzJlpsS4XYhhnI847LHKuTpKEjyc8TUWXhWNwHqXGiyLYo7pBbolghfYmdTWDLT3IYvVm2JgcUBewC8rLeGcKVLBAj1AaC0u06gkL8nT10uiviE3zGZoSDlR8309ED6n6rF2ichT9sscGq2U-X8eNNfdAzp9rE6x-V2eeieE4TXk2Ff9ZL1tMSrk</recordid><startdate>20230629</startdate><enddate>20230629</enddate><creator>Hajjaji, Yosra</creator><creator>Ayyub Alzahem</creator><creator>Boulila, Wadii</creator><creator>Farah, Imed Riadh</creator><creator>Koubaa, Anis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230629</creationdate><title>Sustainable Palm Tree Farming: Leveraging IoT and Multi-Modal Data for Early Detection and Mapping of Red Palm Weevil</title><author>Hajjaji, Yosra ; Ayyub Alzahem ; Boulila, Wadii ; Farah, Imed Riadh ; Koubaa, Anis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28316552893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer vision</topic><topic>Economic impact</topic><topic>Farming</topic><topic>Insects</topic><topic>Internet of Things</topic><topic>Mapping</topic><topic>Modal data</topic><topic>Spatial data</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Hajjaji, Yosra</creatorcontrib><creatorcontrib>Ayyub Alzahem</creatorcontrib><creatorcontrib>Boulila, Wadii</creatorcontrib><creatorcontrib>Farah, Imed Riadh</creatorcontrib><creatorcontrib>Koubaa, Anis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajjaji, Yosra</au><au>Ayyub Alzahem</au><au>Boulila, Wadii</au><au>Farah, Imed Riadh</au><au>Koubaa, Anis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sustainable Palm Tree Farming: Leveraging IoT and Multi-Modal Data for Early Detection and Mapping of Red Palm Weevil</atitle><jtitle>arXiv.org</jtitle><date>2023-06-29</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The Red Palm Weevil (RPW) is a highly destructive insect causing economic losses and impacting palm tree farming worldwide. This paper proposes an innovative approach for sustainable palm tree farming by utilizing advanced technologies for the early detection and management of RPW. Our approach combines computer vision, deep learning (DL), the Internet of Things (IoT), and geospatial data to detect and classify RPW-infested palm trees effectively. The main phases include; (1) DL classification using sound data from IoT devices, (2) palm tree detection using YOLOv8 on UAV images, and (3) RPW mapping using geospatial data. Our custom DL model achieves 100% precision and recall in detecting and localizing infested palm trees. Integrating geospatial data enables the creation of a comprehensive RPW distribution map for efficient monitoring and targeted management strategies. This technology-driven approach benefits agricultural authorities, farmers, and researchers in managing RPW infestations and safeguarding palm tree plantations' productivity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2831655289 |
source | Publicly Available Content Database |
subjects | Computer vision Economic impact Farming Insects Internet of Things Mapping Modal data Spatial data Unmanned aerial vehicles |
title | Sustainable Palm Tree Farming: Leveraging IoT and Multi-Modal Data for Early Detection and Mapping of Red Palm Weevil |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sustainable%20Palm%20Tree%20Farming:%20Leveraging%20IoT%20and%20Multi-Modal%20Data%20for%20Early%20Detection%20and%20Mapping%20of%20Red%20Palm%20Weevil&rft.jtitle=arXiv.org&rft.au=Hajjaji,%20Yosra&rft.date=2023-06-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2831655289%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28316552893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831655289&rft_id=info:pmid/&rfr_iscdi=true |