Loading…

Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity

As part of the “Cosmological Distance Scale” series, the paper focuses on the cosmic jerk issue. Drawing on the data for the parametric identification of the Friedmann–Robertson–Walker model as the dependence of photometric distance on Type Ia supernova (SN Ia) redshift used by the High-Z SN Search...

Full description

Saved in:
Bibliographic Details
Published in:Measurement techniques 2023-06, Vol.66 (3), p.149-154
Main Author: Levin, S. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c343t-3efcdd0230d55869801d2380c1238be9e32a2d32c2a0f8e7c4c4bb14882add643
container_end_page 154
container_issue 3
container_start_page 149
container_title Measurement techniques
container_volume 66
creator Levin, S. F.
description As part of the “Cosmological Distance Scale” series, the paper focuses on the cosmic jerk issue. Drawing on the data for the parametric identification of the Friedmann–Robertson–Walker model as the dependence of photometric distance on Type Ia supernova (SN Ia) redshift used by the High-Z SN Search Team and Supernovae Cosmology Project, it is considered whether the accelerating expansion of the universe can be assumed to be the most plausible hypothesis under the criterion of minimum inadequacy error. The previously detected change points (structural and parameter changes in the systematic component of the model) and rank inversions of SN Ia photometric distances for the systematic component of this model are analyzed. It is shown that these metric disruptions are caused by the isotropy of the Friedmann-Robertson-Walker model. In the anisotropic model of the cosmological distance scale, change points and rank inversions are associated with the gravitational dipole orientation of inhomogeneity in the large-scale structure of the universe. These dipoles represent diametrically opposite “supercluster–giant void” pairs on the celestial sphere. Only the size of the supervoid in the constellation of Eridanus, comparable to that of the observable part of the universe, causes a great imbalance in the gravitational effect of the massive supercluster. This leads to disruptions in the form of change points and rank inversions in the isotropic models of the Friedmann–Robertson–Walker type.
doi_str_mv 10.1007/s11018-023-02203-y
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2831996984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755542759</galeid><sourcerecordid>A755542759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3efcdd0230d55869801d2380c1238be9e32a2d32c2a0f8e7c4c4bb14882add643</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWB9_wFXAlYupeUw6GXdSXxVB8bETQprcGaPtpCap2H9v6gjiRkISEr5zOYeD0AElQ0pIdRwpJVQWhPG8GeHFagMNqKh4IWsy2kQDIkpe0Lpi22gnxldCCK9G9QA9j32c-5lvndEzfOZi0p2BiB_yE4b4ToeEqTjBa8wZfA3hDevO4sugP1zSyfnuW7fwM8C-wZPuxc99Cx24tNpDW42eRdj_uXfR08X54_iquLm9nIxPbwrDS54KDo2xNnsnVgg5qiWhlnFJDM3nFGrgTDPLmWGaNBIqU5pyOqWllExbOyr5Ljrs5y6Cf19CTOrVL0M2FhWTnNZ1nrmmhj3V5mjKdY1PQZu8LORovoPG5f_TSghRskrUWXD0R5CZBJ-p1csY1eTh_i_LetYEH2OARi2Cm-uwUpSodUWqr0jlmOq7IrXKIt6LYoa7FsKv739UXyGbkmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831996984</pqid></control><display><type>article</type><title>Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity</title><source>Springer Nature</source><creator>Levin, S. F.</creator><creatorcontrib>Levin, S. F.</creatorcontrib><description>As part of the “Cosmological Distance Scale” series, the paper focuses on the cosmic jerk issue. Drawing on the data for the parametric identification of the Friedmann–Robertson–Walker model as the dependence of photometric distance on Type Ia supernova (SN Ia) redshift used by the High-Z SN Search Team and Supernovae Cosmology Project, it is considered whether the accelerating expansion of the universe can be assumed to be the most plausible hypothesis under the criterion of minimum inadequacy error. The previously detected change points (structural and parameter changes in the systematic component of the model) and rank inversions of SN Ia photometric distances for the systematic component of this model are analyzed. It is shown that these metric disruptions are caused by the isotropy of the Friedmann-Robertson-Walker model. In the anisotropic model of the cosmological distance scale, change points and rank inversions are associated with the gravitational dipole orientation of inhomogeneity in the large-scale structure of the universe. These dipoles represent diametrically opposite “supercluster–giant void” pairs on the celestial sphere. Only the size of the supervoid in the constellation of Eridanus, comparable to that of the observable part of the universe, causes a great imbalance in the gravitational effect of the massive supercluster. This leads to disruptions in the form of change points and rank inversions in the isotropic models of the Friedmann–Robertson–Walker type.</description><identifier>ISSN: 0543-1972</identifier><identifier>EISSN: 1573-8906</identifier><identifier>DOI: 10.1007/s11018-023-02203-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Anisotropy ; Astronomical models ; Celestial sphere ; Characterization and Evaluation of Materials ; Constellations ; Cosmology ; Dipoles ; Error detection ; Gravitational effects ; Inhomogeneity ; Inversions ; Isotropy ; Large scale structure of the universe ; Measurement Science and Instrumentation ; Photometry ; Physical Chemistry ; Physics ; Physics and Astronomy ; Supernovae ; Universe</subject><ispartof>Measurement techniques, 2023-06, Vol.66 (3), p.149-154</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-3efcdd0230d55869801d2380c1238be9e32a2d32c2a0f8e7c4c4bb14882add643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Levin, S. F.</creatorcontrib><title>Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity</title><title>Measurement techniques</title><addtitle>Meas Tech</addtitle><description>As part of the “Cosmological Distance Scale” series, the paper focuses on the cosmic jerk issue. Drawing on the data for the parametric identification of the Friedmann–Robertson–Walker model as the dependence of photometric distance on Type Ia supernova (SN Ia) redshift used by the High-Z SN Search Team and Supernovae Cosmology Project, it is considered whether the accelerating expansion of the universe can be assumed to be the most plausible hypothesis under the criterion of minimum inadequacy error. The previously detected change points (structural and parameter changes in the systematic component of the model) and rank inversions of SN Ia photometric distances for the systematic component of this model are analyzed. It is shown that these metric disruptions are caused by the isotropy of the Friedmann-Robertson-Walker model. In the anisotropic model of the cosmological distance scale, change points and rank inversions are associated with the gravitational dipole orientation of inhomogeneity in the large-scale structure of the universe. These dipoles represent diametrically opposite “supercluster–giant void” pairs on the celestial sphere. Only the size of the supervoid in the constellation of Eridanus, comparable to that of the observable part of the universe, causes a great imbalance in the gravitational effect of the massive supercluster. This leads to disruptions in the form of change points and rank inversions in the isotropic models of the Friedmann–Robertson–Walker type.</description><subject>Analytical Chemistry</subject><subject>Anisotropy</subject><subject>Astronomical models</subject><subject>Celestial sphere</subject><subject>Characterization and Evaluation of Materials</subject><subject>Constellations</subject><subject>Cosmology</subject><subject>Dipoles</subject><subject>Error detection</subject><subject>Gravitational effects</subject><subject>Inhomogeneity</subject><subject>Inversions</subject><subject>Isotropy</subject><subject>Large scale structure of the universe</subject><subject>Measurement Science and Instrumentation</subject><subject>Photometry</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Supernovae</subject><subject>Universe</subject><issn>0543-1972</issn><issn>1573-8906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMoWB9_wFXAlYupeUw6GXdSXxVB8bETQprcGaPtpCap2H9v6gjiRkISEr5zOYeD0AElQ0pIdRwpJVQWhPG8GeHFagMNqKh4IWsy2kQDIkpe0Lpi22gnxldCCK9G9QA9j32c-5lvndEzfOZi0p2BiB_yE4b4ToeEqTjBa8wZfA3hDevO4sugP1zSyfnuW7fwM8C-wZPuxc99Cx24tNpDW42eRdj_uXfR08X54_iquLm9nIxPbwrDS54KDo2xNnsnVgg5qiWhlnFJDM3nFGrgTDPLmWGaNBIqU5pyOqWllExbOyr5Ljrs5y6Cf19CTOrVL0M2FhWTnNZ1nrmmhj3V5mjKdY1PQZu8LORovoPG5f_TSghRskrUWXD0R5CZBJ-p1csY1eTh_i_LetYEH2OARi2Cm-uwUpSodUWqr0jlmOq7IrXKIt6LYoa7FsKv739UXyGbkmI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Levin, S. F.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20230601</creationdate><title>Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity</title><author>Levin, S. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3efcdd0230d55869801d2380c1238be9e32a2d32c2a0f8e7c4c4bb14882add643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical Chemistry</topic><topic>Anisotropy</topic><topic>Astronomical models</topic><topic>Celestial sphere</topic><topic>Characterization and Evaluation of Materials</topic><topic>Constellations</topic><topic>Cosmology</topic><topic>Dipoles</topic><topic>Error detection</topic><topic>Gravitational effects</topic><topic>Inhomogeneity</topic><topic>Inversions</topic><topic>Isotropy</topic><topic>Large scale structure of the universe</topic><topic>Measurement Science and Instrumentation</topic><topic>Photometry</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Supernovae</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levin, S. F.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levin, S. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity</atitle><jtitle>Measurement techniques</jtitle><stitle>Meas Tech</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>66</volume><issue>3</issue><spage>149</spage><epage>154</epage><pages>149-154</pages><issn>0543-1972</issn><eissn>1573-8906</eissn><abstract>As part of the “Cosmological Distance Scale” series, the paper focuses on the cosmic jerk issue. Drawing on the data for the parametric identification of the Friedmann–Robertson–Walker model as the dependence of photometric distance on Type Ia supernova (SN Ia) redshift used by the High-Z SN Search Team and Supernovae Cosmology Project, it is considered whether the accelerating expansion of the universe can be assumed to be the most plausible hypothesis under the criterion of minimum inadequacy error. The previously detected change points (structural and parameter changes in the systematic component of the model) and rank inversions of SN Ia photometric distances for the systematic component of this model are analyzed. It is shown that these metric disruptions are caused by the isotropy of the Friedmann-Robertson-Walker model. In the anisotropic model of the cosmological distance scale, change points and rank inversions are associated with the gravitational dipole orientation of inhomogeneity in the large-scale structure of the universe. These dipoles represent diametrically opposite “supercluster–giant void” pairs on the celestial sphere. Only the size of the supervoid in the constellation of Eridanus, comparable to that of the observable part of the universe, causes a great imbalance in the gravitational effect of the massive supercluster. This leads to disruptions in the form of change points and rank inversions in the isotropic models of the Friedmann–Robertson–Walker type.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11018-023-02203-y</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0543-1972
ispartof Measurement techniques, 2023-06, Vol.66 (3), p.149-154
issn 0543-1972
1573-8906
language eng
recordid cdi_proquest_journals_2831996984
source Springer Nature
subjects Analytical Chemistry
Anisotropy
Astronomical models
Celestial sphere
Characterization and Evaluation of Materials
Constellations
Cosmology
Dipoles
Error detection
Gravitational effects
Inhomogeneity
Inversions
Isotropy
Large scale structure of the universe
Measurement Science and Instrumentation
Photometry
Physical Chemistry
Physics
Physics and Astronomy
Supernovae
Universe
title Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmological%20Distances%20Scale.%20Part%2015:%20Cosmic%20Jerk%20and%20Gravitational%20Dipole%20of%20Inhomogeneity&rft.jtitle=Measurement%20techniques&rft.au=Levin,%20S.%20F.&rft.date=2023-06-01&rft.volume=66&rft.issue=3&rft.spage=149&rft.epage=154&rft.pages=149-154&rft.issn=0543-1972&rft.eissn=1573-8906&rft_id=info:doi/10.1007/s11018-023-02203-y&rft_dat=%3Cgale_proqu%3EA755542759%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-3efcdd0230d55869801d2380c1238be9e32a2d32c2a0f8e7c4c4bb14882add643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831996984&rft_id=info:pmid/&rft_galeid=A755542759&rfr_iscdi=true