Loading…
Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity
As part of the “Cosmological Distance Scale” series, the paper focuses on the cosmic jerk issue. Drawing on the data for the parametric identification of the Friedmann–Robertson–Walker model as the dependence of photometric distance on Type Ia supernova (SN Ia) redshift used by the High-Z SN Search...
Saved in:
Published in: | Measurement techniques 2023-06, Vol.66 (3), p.149-154 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-3efcdd0230d55869801d2380c1238be9e32a2d32c2a0f8e7c4c4bb14882add643 |
container_end_page | 154 |
container_issue | 3 |
container_start_page | 149 |
container_title | Measurement techniques |
container_volume | 66 |
creator | Levin, S. F. |
description | As part of the “Cosmological Distance Scale” series, the paper focuses on the cosmic jerk issue. Drawing on the data for the parametric identification of the Friedmann–Robertson–Walker model as the dependence of photometric distance on Type Ia supernova (SN Ia) redshift used by the High-Z SN Search Team and Supernovae Cosmology Project, it is considered whether the accelerating expansion of the universe can be assumed to be the most plausible hypothesis under the criterion of minimum inadequacy error. The previously detected change points (structural and parameter changes in the systematic component of the model) and rank inversions of SN Ia photometric distances for the systematic component of this model are analyzed. It is shown that these metric disruptions are caused by the isotropy of the Friedmann-Robertson-Walker model. In the anisotropic model of the cosmological distance scale, change points and rank inversions are associated with the gravitational dipole orientation of inhomogeneity in the large-scale structure of the universe. These dipoles represent diametrically opposite “supercluster–giant void” pairs on the celestial sphere. Only the size of the supervoid in the constellation of Eridanus, comparable to that of the observable part of the universe, causes a great imbalance in the gravitational effect of the massive supercluster. This leads to disruptions in the form of change points and rank inversions in the isotropic models of the Friedmann–Robertson–Walker type. |
doi_str_mv | 10.1007/s11018-023-02203-y |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2831996984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755542759</galeid><sourcerecordid>A755542759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3efcdd0230d55869801d2380c1238be9e32a2d32c2a0f8e7c4c4bb14882add643</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWB9_wFXAlYupeUw6GXdSXxVB8bETQprcGaPtpCap2H9v6gjiRkISEr5zOYeD0AElQ0pIdRwpJVQWhPG8GeHFagMNqKh4IWsy2kQDIkpe0Lpi22gnxldCCK9G9QA9j32c-5lvndEzfOZi0p2BiB_yE4b4ToeEqTjBa8wZfA3hDevO4sugP1zSyfnuW7fwM8C-wZPuxc99Cx24tNpDW42eRdj_uXfR08X54_iquLm9nIxPbwrDS54KDo2xNnsnVgg5qiWhlnFJDM3nFGrgTDPLmWGaNBIqU5pyOqWllExbOyr5Ljrs5y6Cf19CTOrVL0M2FhWTnNZ1nrmmhj3V5mjKdY1PQZu8LORovoPG5f_TSghRskrUWXD0R5CZBJ-p1csY1eTh_i_LetYEH2OARi2Cm-uwUpSodUWqr0jlmOq7IrXKIt6LYoa7FsKv739UXyGbkmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831996984</pqid></control><display><type>article</type><title>Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity</title><source>Springer Nature</source><creator>Levin, S. F.</creator><creatorcontrib>Levin, S. F.</creatorcontrib><description>As part of the “Cosmological Distance Scale” series, the paper focuses on the cosmic jerk issue. Drawing on the data for the parametric identification of the Friedmann–Robertson–Walker model as the dependence of photometric distance on Type Ia supernova (SN Ia) redshift used by the High-Z SN Search Team and Supernovae Cosmology Project, it is considered whether the accelerating expansion of the universe can be assumed to be the most plausible hypothesis under the criterion of minimum inadequacy error. The previously detected change points (structural and parameter changes in the systematic component of the model) and rank inversions of SN Ia photometric distances for the systematic component of this model are analyzed. It is shown that these metric disruptions are caused by the isotropy of the Friedmann-Robertson-Walker model. In the anisotropic model of the cosmological distance scale, change points and rank inversions are associated with the gravitational dipole orientation of inhomogeneity in the large-scale structure of the universe. These dipoles represent diametrically opposite “supercluster–giant void” pairs on the celestial sphere. Only the size of the supervoid in the constellation of Eridanus, comparable to that of the observable part of the universe, causes a great imbalance in the gravitational effect of the massive supercluster. This leads to disruptions in the form of change points and rank inversions in the isotropic models of the Friedmann–Robertson–Walker type.</description><identifier>ISSN: 0543-1972</identifier><identifier>EISSN: 1573-8906</identifier><identifier>DOI: 10.1007/s11018-023-02203-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Anisotropy ; Astronomical models ; Celestial sphere ; Characterization and Evaluation of Materials ; Constellations ; Cosmology ; Dipoles ; Error detection ; Gravitational effects ; Inhomogeneity ; Inversions ; Isotropy ; Large scale structure of the universe ; Measurement Science and Instrumentation ; Photometry ; Physical Chemistry ; Physics ; Physics and Astronomy ; Supernovae ; Universe</subject><ispartof>Measurement techniques, 2023-06, Vol.66 (3), p.149-154</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-3efcdd0230d55869801d2380c1238be9e32a2d32c2a0f8e7c4c4bb14882add643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Levin, S. F.</creatorcontrib><title>Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity</title><title>Measurement techniques</title><addtitle>Meas Tech</addtitle><description>As part of the “Cosmological Distance Scale” series, the paper focuses on the cosmic jerk issue. Drawing on the data for the parametric identification of the Friedmann–Robertson–Walker model as the dependence of photometric distance on Type Ia supernova (SN Ia) redshift used by the High-Z SN Search Team and Supernovae Cosmology Project, it is considered whether the accelerating expansion of the universe can be assumed to be the most plausible hypothesis under the criterion of minimum inadequacy error. The previously detected change points (structural and parameter changes in the systematic component of the model) and rank inversions of SN Ia photometric distances for the systematic component of this model are analyzed. It is shown that these metric disruptions are caused by the isotropy of the Friedmann-Robertson-Walker model. In the anisotropic model of the cosmological distance scale, change points and rank inversions are associated with the gravitational dipole orientation of inhomogeneity in the large-scale structure of the universe. These dipoles represent diametrically opposite “supercluster–giant void” pairs on the celestial sphere. Only the size of the supervoid in the constellation of Eridanus, comparable to that of the observable part of the universe, causes a great imbalance in the gravitational effect of the massive supercluster. This leads to disruptions in the form of change points and rank inversions in the isotropic models of the Friedmann–Robertson–Walker type.</description><subject>Analytical Chemistry</subject><subject>Anisotropy</subject><subject>Astronomical models</subject><subject>Celestial sphere</subject><subject>Characterization and Evaluation of Materials</subject><subject>Constellations</subject><subject>Cosmology</subject><subject>Dipoles</subject><subject>Error detection</subject><subject>Gravitational effects</subject><subject>Inhomogeneity</subject><subject>Inversions</subject><subject>Isotropy</subject><subject>Large scale structure of the universe</subject><subject>Measurement Science and Instrumentation</subject><subject>Photometry</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Supernovae</subject><subject>Universe</subject><issn>0543-1972</issn><issn>1573-8906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMoWB9_wFXAlYupeUw6GXdSXxVB8bETQprcGaPtpCap2H9v6gjiRkISEr5zOYeD0AElQ0pIdRwpJVQWhPG8GeHFagMNqKh4IWsy2kQDIkpe0Lpi22gnxldCCK9G9QA9j32c-5lvndEzfOZi0p2BiB_yE4b4ToeEqTjBa8wZfA3hDevO4sugP1zSyfnuW7fwM8C-wZPuxc99Cx24tNpDW42eRdj_uXfR08X54_iquLm9nIxPbwrDS54KDo2xNnsnVgg5qiWhlnFJDM3nFGrgTDPLmWGaNBIqU5pyOqWllExbOyr5Ljrs5y6Cf19CTOrVL0M2FhWTnNZ1nrmmhj3V5mjKdY1PQZu8LORovoPG5f_TSghRskrUWXD0R5CZBJ-p1csY1eTh_i_LetYEH2OARi2Cm-uwUpSodUWqr0jlmOq7IrXKIt6LYoa7FsKv739UXyGbkmI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Levin, S. F.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20230601</creationdate><title>Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity</title><author>Levin, S. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3efcdd0230d55869801d2380c1238be9e32a2d32c2a0f8e7c4c4bb14882add643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical Chemistry</topic><topic>Anisotropy</topic><topic>Astronomical models</topic><topic>Celestial sphere</topic><topic>Characterization and Evaluation of Materials</topic><topic>Constellations</topic><topic>Cosmology</topic><topic>Dipoles</topic><topic>Error detection</topic><topic>Gravitational effects</topic><topic>Inhomogeneity</topic><topic>Inversions</topic><topic>Isotropy</topic><topic>Large scale structure of the universe</topic><topic>Measurement Science and Instrumentation</topic><topic>Photometry</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Supernovae</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levin, S. F.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levin, S. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity</atitle><jtitle>Measurement techniques</jtitle><stitle>Meas Tech</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>66</volume><issue>3</issue><spage>149</spage><epage>154</epage><pages>149-154</pages><issn>0543-1972</issn><eissn>1573-8906</eissn><abstract>As part of the “Cosmological Distance Scale” series, the paper focuses on the cosmic jerk issue. Drawing on the data for the parametric identification of the Friedmann–Robertson–Walker model as the dependence of photometric distance on Type Ia supernova (SN Ia) redshift used by the High-Z SN Search Team and Supernovae Cosmology Project, it is considered whether the accelerating expansion of the universe can be assumed to be the most plausible hypothesis under the criterion of minimum inadequacy error. The previously detected change points (structural and parameter changes in the systematic component of the model) and rank inversions of SN Ia photometric distances for the systematic component of this model are analyzed. It is shown that these metric disruptions are caused by the isotropy of the Friedmann-Robertson-Walker model. In the anisotropic model of the cosmological distance scale, change points and rank inversions are associated with the gravitational dipole orientation of inhomogeneity in the large-scale structure of the universe. These dipoles represent diametrically opposite “supercluster–giant void” pairs on the celestial sphere. Only the size of the supervoid in the constellation of Eridanus, comparable to that of the observable part of the universe, causes a great imbalance in the gravitational effect of the massive supercluster. This leads to disruptions in the form of change points and rank inversions in the isotropic models of the Friedmann–Robertson–Walker type.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11018-023-02203-y</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0543-1972 |
ispartof | Measurement techniques, 2023-06, Vol.66 (3), p.149-154 |
issn | 0543-1972 1573-8906 |
language | eng |
recordid | cdi_proquest_journals_2831996984 |
source | Springer Nature |
subjects | Analytical Chemistry Anisotropy Astronomical models Celestial sphere Characterization and Evaluation of Materials Constellations Cosmology Dipoles Error detection Gravitational effects Inhomogeneity Inversions Isotropy Large scale structure of the universe Measurement Science and Instrumentation Photometry Physical Chemistry Physics Physics and Astronomy Supernovae Universe |
title | Cosmological Distances Scale. Part 15: Cosmic Jerk and Gravitational Dipole of Inhomogeneity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmological%20Distances%20Scale.%20Part%2015:%20Cosmic%20Jerk%20and%20Gravitational%20Dipole%20of%20Inhomogeneity&rft.jtitle=Measurement%20techniques&rft.au=Levin,%20S.%20F.&rft.date=2023-06-01&rft.volume=66&rft.issue=3&rft.spage=149&rft.epage=154&rft.pages=149-154&rft.issn=0543-1972&rft.eissn=1573-8906&rft_id=info:doi/10.1007/s11018-023-02203-y&rft_dat=%3Cgale_proqu%3EA755542759%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-3efcdd0230d55869801d2380c1238be9e32a2d32c2a0f8e7c4c4bb14882add643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831996984&rft_id=info:pmid/&rft_galeid=A755542759&rfr_iscdi=true |