Loading…

Variational preparation of entangled states on quantum computers

We propose a variational approach for preparing entangled quantum states on quantum computers. The methodology involves training a unitary operation to match with a target unitary using the Fubini-Study distance as a cost function. We employ various gradient-based optimization techniques to enhance...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-06
Main Authors: Vu, Tuan Hai, Nguyen, Tan Viet, Le Bin Ho
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vu, Tuan Hai
Nguyen, Tan Viet
Le Bin Ho
description We propose a variational approach for preparing entangled quantum states on quantum computers. The methodology involves training a unitary operation to match with a target unitary using the Fubini-Study distance as a cost function. We employ various gradient-based optimization techniques to enhance performance, including Adam and quantum natural gradient. Our investigation showcases the versatility of different ansatzes featuring a hypergraph structure, enabling the preparation of diverse entanglement target states such as GHZ, W, and absolutely maximally entangled states. Remarkably, the circuit depth scales efficiently with the number of layers and does not depend on the number of qubits. Moreover, we explore the impacts of barren plateaus, readout noise, and error mitigation techniques on the proposed approach. Through our analysis, we demonstrate the effectiveness of the variational algorithm in maximizing the efficiency of quantum state preparation, leveraging low-depth quantum circuits.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2832637474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832637474</sourcerecordid><originalsourceid>FETCH-proquest_journals_28326374743</originalsourceid><addsrcrecordid>eNqNjE0KwjAQRoMgWLR3CLgu1En_loIoHkDclkGnpaVN0szk_hbxAK4-3uPxbVQCxpyypgDYqZR5zPMcqhrK0iTq_MQwoAzO4qR9II_hS9p1mqyg7Sd6axYUYr3qJaKVOOuXm30UCnxQ2w4npvS3e3W8XR-Xe-aDWyKxtKOLYX3nFhoDlamLujD_VR-rkToF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832637474</pqid></control><display><type>article</type><title>Variational preparation of entangled states on quantum computers</title><source>ProQuest - Publicly Available Content Database</source><creator>Vu, Tuan Hai ; Nguyen, Tan Viet ; Le Bin Ho</creator><creatorcontrib>Vu, Tuan Hai ; Nguyen, Tan Viet ; Le Bin Ho</creatorcontrib><description>We propose a variational approach for preparing entangled quantum states on quantum computers. The methodology involves training a unitary operation to match with a target unitary using the Fubini-Study distance as a cost function. We employ various gradient-based optimization techniques to enhance performance, including Adam and quantum natural gradient. Our investigation showcases the versatility of different ansatzes featuring a hypergraph structure, enabling the preparation of diverse entanglement target states such as GHZ, W, and absolutely maximally entangled states. Remarkably, the circuit depth scales efficiently with the number of layers and does not depend on the number of qubits. Moreover, we explore the impacts of barren plateaus, readout noise, and error mitigation techniques on the proposed approach. Through our analysis, we demonstrate the effectiveness of the variational algorithm in maximizing the efficiency of quantum state preparation, leveraging low-depth quantum circuits.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Circuits ; Cost function ; Entangled states ; Optimization ; Quantum computers ; Quantum entanglement ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2832637474?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Vu, Tuan Hai</creatorcontrib><creatorcontrib>Nguyen, Tan Viet</creatorcontrib><creatorcontrib>Le Bin Ho</creatorcontrib><title>Variational preparation of entangled states on quantum computers</title><title>arXiv.org</title><description>We propose a variational approach for preparing entangled quantum states on quantum computers. The methodology involves training a unitary operation to match with a target unitary using the Fubini-Study distance as a cost function. We employ various gradient-based optimization techniques to enhance performance, including Adam and quantum natural gradient. Our investigation showcases the versatility of different ansatzes featuring a hypergraph structure, enabling the preparation of diverse entanglement target states such as GHZ, W, and absolutely maximally entangled states. Remarkably, the circuit depth scales efficiently with the number of layers and does not depend on the number of qubits. Moreover, we explore the impacts of barren plateaus, readout noise, and error mitigation techniques on the proposed approach. Through our analysis, we demonstrate the effectiveness of the variational algorithm in maximizing the efficiency of quantum state preparation, leveraging low-depth quantum circuits.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Cost function</subject><subject>Entangled states</subject><subject>Optimization</subject><subject>Quantum computers</subject><subject>Quantum entanglement</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjE0KwjAQRoMgWLR3CLgu1En_loIoHkDclkGnpaVN0szk_hbxAK4-3uPxbVQCxpyypgDYqZR5zPMcqhrK0iTq_MQwoAzO4qR9II_hS9p1mqyg7Sd6axYUYr3qJaKVOOuXm30UCnxQ2w4npvS3e3W8XR-Xe-aDWyKxtKOLYX3nFhoDlamLujD_VR-rkToF</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Vu, Tuan Hai</creator><creator>Nguyen, Tan Viet</creator><creator>Le Bin Ho</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230630</creationdate><title>Variational preparation of entangled states on quantum computers</title><author>Vu, Tuan Hai ; Nguyen, Tan Viet ; Le Bin Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28326374743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Cost function</topic><topic>Entangled states</topic><topic>Optimization</topic><topic>Quantum computers</topic><topic>Quantum entanglement</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Vu, Tuan Hai</creatorcontrib><creatorcontrib>Nguyen, Tan Viet</creatorcontrib><creatorcontrib>Le Bin Ho</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Tuan Hai</au><au>Nguyen, Tan Viet</au><au>Le Bin Ho</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Variational preparation of entangled states on quantum computers</atitle><jtitle>arXiv.org</jtitle><date>2023-06-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose a variational approach for preparing entangled quantum states on quantum computers. The methodology involves training a unitary operation to match with a target unitary using the Fubini-Study distance as a cost function. We employ various gradient-based optimization techniques to enhance performance, including Adam and quantum natural gradient. Our investigation showcases the versatility of different ansatzes featuring a hypergraph structure, enabling the preparation of diverse entanglement target states such as GHZ, W, and absolutely maximally entangled states. Remarkably, the circuit depth scales efficiently with the number of layers and does not depend on the number of qubits. Moreover, we explore the impacts of barren plateaus, readout noise, and error mitigation techniques on the proposed approach. Through our analysis, we demonstrate the effectiveness of the variational algorithm in maximizing the efficiency of quantum state preparation, leveraging low-depth quantum circuits.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2832637474
source ProQuest - Publicly Available Content Database
subjects Algorithms
Circuits
Cost function
Entangled states
Optimization
Quantum computers
Quantum entanglement
Qubits (quantum computing)
title Variational preparation of entangled states on quantum computers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Variational%20preparation%20of%20entangled%20states%20on%20quantum%20computers&rft.jtitle=arXiv.org&rft.au=Vu,%20Tuan%20Hai&rft.date=2023-06-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2832637474%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28326374743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2832637474&rft_id=info:pmid/&rfr_iscdi=true