Loading…
Variational preparation of entangled states on quantum computers
We propose a variational approach for preparing entangled quantum states on quantum computers. The methodology involves training a unitary operation to match with a target unitary using the Fubini-Study distance as a cost function. We employ various gradient-based optimization techniques to enhance...
Saved in:
Published in: | arXiv.org 2023-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Vu, Tuan Hai Nguyen, Tan Viet Le Bin Ho |
description | We propose a variational approach for preparing entangled quantum states on quantum computers. The methodology involves training a unitary operation to match with a target unitary using the Fubini-Study distance as a cost function. We employ various gradient-based optimization techniques to enhance performance, including Adam and quantum natural gradient. Our investigation showcases the versatility of different ansatzes featuring a hypergraph structure, enabling the preparation of diverse entanglement target states such as GHZ, W, and absolutely maximally entangled states. Remarkably, the circuit depth scales efficiently with the number of layers and does not depend on the number of qubits. Moreover, we explore the impacts of barren plateaus, readout noise, and error mitigation techniques on the proposed approach. Through our analysis, we demonstrate the effectiveness of the variational algorithm in maximizing the efficiency of quantum state preparation, leveraging low-depth quantum circuits. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2832637474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832637474</sourcerecordid><originalsourceid>FETCH-proquest_journals_28326374743</originalsourceid><addsrcrecordid>eNqNjE0KwjAQRoMgWLR3CLgu1En_loIoHkDclkGnpaVN0szk_hbxAK4-3uPxbVQCxpyypgDYqZR5zPMcqhrK0iTq_MQwoAzO4qR9II_hS9p1mqyg7Sd6axYUYr3qJaKVOOuXm30UCnxQ2w4npvS3e3W8XR-Xe-aDWyKxtKOLYX3nFhoDlamLujD_VR-rkToF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832637474</pqid></control><display><type>article</type><title>Variational preparation of entangled states on quantum computers</title><source>ProQuest - Publicly Available Content Database</source><creator>Vu, Tuan Hai ; Nguyen, Tan Viet ; Le Bin Ho</creator><creatorcontrib>Vu, Tuan Hai ; Nguyen, Tan Viet ; Le Bin Ho</creatorcontrib><description>We propose a variational approach for preparing entangled quantum states on quantum computers. The methodology involves training a unitary operation to match with a target unitary using the Fubini-Study distance as a cost function. We employ various gradient-based optimization techniques to enhance performance, including Adam and quantum natural gradient. Our investigation showcases the versatility of different ansatzes featuring a hypergraph structure, enabling the preparation of diverse entanglement target states such as GHZ, W, and absolutely maximally entangled states. Remarkably, the circuit depth scales efficiently with the number of layers and does not depend on the number of qubits. Moreover, we explore the impacts of barren plateaus, readout noise, and error mitigation techniques on the proposed approach. Through our analysis, we demonstrate the effectiveness of the variational algorithm in maximizing the efficiency of quantum state preparation, leveraging low-depth quantum circuits.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Circuits ; Cost function ; Entangled states ; Optimization ; Quantum computers ; Quantum entanglement ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2832637474?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Vu, Tuan Hai</creatorcontrib><creatorcontrib>Nguyen, Tan Viet</creatorcontrib><creatorcontrib>Le Bin Ho</creatorcontrib><title>Variational preparation of entangled states on quantum computers</title><title>arXiv.org</title><description>We propose a variational approach for preparing entangled quantum states on quantum computers. The methodology involves training a unitary operation to match with a target unitary using the Fubini-Study distance as a cost function. We employ various gradient-based optimization techniques to enhance performance, including Adam and quantum natural gradient. Our investigation showcases the versatility of different ansatzes featuring a hypergraph structure, enabling the preparation of diverse entanglement target states such as GHZ, W, and absolutely maximally entangled states. Remarkably, the circuit depth scales efficiently with the number of layers and does not depend on the number of qubits. Moreover, we explore the impacts of barren plateaus, readout noise, and error mitigation techniques on the proposed approach. Through our analysis, we demonstrate the effectiveness of the variational algorithm in maximizing the efficiency of quantum state preparation, leveraging low-depth quantum circuits.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Cost function</subject><subject>Entangled states</subject><subject>Optimization</subject><subject>Quantum computers</subject><subject>Quantum entanglement</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjE0KwjAQRoMgWLR3CLgu1En_loIoHkDclkGnpaVN0szk_hbxAK4-3uPxbVQCxpyypgDYqZR5zPMcqhrK0iTq_MQwoAzO4qR9II_hS9p1mqyg7Sd6axYUYr3qJaKVOOuXm30UCnxQ2w4npvS3e3W8XR-Xe-aDWyKxtKOLYX3nFhoDlamLujD_VR-rkToF</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Vu, Tuan Hai</creator><creator>Nguyen, Tan Viet</creator><creator>Le Bin Ho</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230630</creationdate><title>Variational preparation of entangled states on quantum computers</title><author>Vu, Tuan Hai ; Nguyen, Tan Viet ; Le Bin Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28326374743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Cost function</topic><topic>Entangled states</topic><topic>Optimization</topic><topic>Quantum computers</topic><topic>Quantum entanglement</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Vu, Tuan Hai</creatorcontrib><creatorcontrib>Nguyen, Tan Viet</creatorcontrib><creatorcontrib>Le Bin Ho</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Tuan Hai</au><au>Nguyen, Tan Viet</au><au>Le Bin Ho</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Variational preparation of entangled states on quantum computers</atitle><jtitle>arXiv.org</jtitle><date>2023-06-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose a variational approach for preparing entangled quantum states on quantum computers. The methodology involves training a unitary operation to match with a target unitary using the Fubini-Study distance as a cost function. We employ various gradient-based optimization techniques to enhance performance, including Adam and quantum natural gradient. Our investigation showcases the versatility of different ansatzes featuring a hypergraph structure, enabling the preparation of diverse entanglement target states such as GHZ, W, and absolutely maximally entangled states. Remarkably, the circuit depth scales efficiently with the number of layers and does not depend on the number of qubits. Moreover, we explore the impacts of barren plateaus, readout noise, and error mitigation techniques on the proposed approach. Through our analysis, we demonstrate the effectiveness of the variational algorithm in maximizing the efficiency of quantum state preparation, leveraging low-depth quantum circuits.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2832637474 |
source | ProQuest - Publicly Available Content Database |
subjects | Algorithms Circuits Cost function Entangled states Optimization Quantum computers Quantum entanglement Qubits (quantum computing) |
title | Variational preparation of entangled states on quantum computers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Variational%20preparation%20of%20entangled%20states%20on%20quantum%20computers&rft.jtitle=arXiv.org&rft.au=Vu,%20Tuan%20Hai&rft.date=2023-06-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2832637474%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28326374743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2832637474&rft_id=info:pmid/&rfr_iscdi=true |