Loading…

Hermitian geometry of Lie algebras with abelian ideals of codimension 2

We examine Hermitian metrics on unimodular Lie algebras which contains a J -invariant abelian ideal of codimension two, and give a classification for all Bismut Kähler-like and all Bismut torsion-parallel metrics on such Lie algebras.

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift 2023-07, Vol.304 (3), Article 51
Main Authors: Guo, Yuqin, Zheng, Fangyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-cf0cc8e870e78c4f7f74b4b4cd4628133a6eccb3843bcabc72802e5c0811c2fe3
container_end_page
container_issue 3
container_start_page
container_title Mathematische Zeitschrift
container_volume 304
creator Guo, Yuqin
Zheng, Fangyang
description We examine Hermitian metrics on unimodular Lie algebras which contains a J -invariant abelian ideal of codimension two, and give a classification for all Bismut Kähler-like and all Bismut torsion-parallel metrics on such Lie algebras.
doi_str_mv 10.1007/s00209-023-03315-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2832825729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832825729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cf0cc8e870e78c4f7f74b4b4cd4628133a6eccb3843bcabc72802e5c0811c2fe3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3TyZ5v0KEVboeBFzyGbndSU7m5Ntki_vakreJM5DMz7vTfwCLnlcM8B9EMGEDBnICQDKXnFqjMy4UoKxo2Q52RS9HI0Wl2Sq5y3AEXUakKWK0xtHKLr6Ab7Fod0pH2g64jU7TZYJ5fpVxw-qKtxd6Jig26XT4zvm9hil2PfUXFNLkK5483vnpL356e3xYqtX5cvi8c185KrgfkA3hs0GlAbr4IOWtVlfKNmwnAp3Qy9r6VRsvau9loYEFh5MJx7EVBOyd2Yu0_95wHzYLf9IXXlpRVGCiMqLeaFEiPlU59zwmD3KbYuHS0HeyrMjoXZUpj9KcxWxSRHUy5wt8H0F_2P6xso7G2J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832825729</pqid></control><display><type>article</type><title>Hermitian geometry of Lie algebras with abelian ideals of codimension 2</title><source>Springer Nature</source><creator>Guo, Yuqin ; Zheng, Fangyang</creator><creatorcontrib>Guo, Yuqin ; Zheng, Fangyang</creatorcontrib><description>We examine Hermitian metrics on unimodular Lie algebras which contains a J -invariant abelian ideal of codimension two, and give a classification for all Bismut Kähler-like and all Bismut torsion-parallel metrics on such Lie algebras.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-023-03315-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Lie groups ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2023-07, Vol.304 (3), Article 51</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-cf0cc8e870e78c4f7f74b4b4cd4628133a6eccb3843bcabc72802e5c0811c2fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Guo, Yuqin</creatorcontrib><creatorcontrib>Zheng, Fangyang</creatorcontrib><title>Hermitian geometry of Lie algebras with abelian ideals of codimension 2</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We examine Hermitian metrics on unimodular Lie algebras which contains a J -invariant abelian ideal of codimension two, and give a classification for all Bismut Kähler-like and all Bismut torsion-parallel metrics on such Lie algebras.</description><subject>Algebra</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3TyZ5v0KEVboeBFzyGbndSU7m5Ntki_vakreJM5DMz7vTfwCLnlcM8B9EMGEDBnICQDKXnFqjMy4UoKxo2Q52RS9HI0Wl2Sq5y3AEXUakKWK0xtHKLr6Ab7Fod0pH2g64jU7TZYJ5fpVxw-qKtxd6Jig26XT4zvm9hil2PfUXFNLkK5483vnpL356e3xYqtX5cvi8c185KrgfkA3hs0GlAbr4IOWtVlfKNmwnAp3Qy9r6VRsvau9loYEFh5MJx7EVBOyd2Yu0_95wHzYLf9IXXlpRVGCiMqLeaFEiPlU59zwmD3KbYuHS0HeyrMjoXZUpj9KcxWxSRHUy5wt8H0F_2P6xso7G2J</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Guo, Yuqin</creator><creator>Zheng, Fangyang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Hermitian geometry of Lie algebras with abelian ideals of codimension 2</title><author>Guo, Yuqin ; Zheng, Fangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cf0cc8e870e78c4f7f74b4b4cd4628133a6eccb3843bcabc72802e5c0811c2fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yuqin</creatorcontrib><creatorcontrib>Zheng, Fangyang</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yuqin</au><au>Zheng, Fangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hermitian geometry of Lie algebras with abelian ideals of codimension 2</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>304</volume><issue>3</issue><artnum>51</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We examine Hermitian metrics on unimodular Lie algebras which contains a J -invariant abelian ideal of codimension two, and give a classification for all Bismut Kähler-like and all Bismut torsion-parallel metrics on such Lie algebras.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-023-03315-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2023-07, Vol.304 (3), Article 51
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2832825729
source Springer Nature
subjects Algebra
Lie groups
Mathematics
Mathematics and Statistics
title Hermitian geometry of Lie algebras with abelian ideals of codimension 2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hermitian%20geometry%20of%20Lie%20algebras%20with%20abelian%20ideals%20of%20codimension%202&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Guo,%20Yuqin&rft.date=2023-07-01&rft.volume=304&rft.issue=3&rft.artnum=51&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-023-03315-5&rft_dat=%3Cproquest_cross%3E2832825729%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-cf0cc8e870e78c4f7f74b4b4cd4628133a6eccb3843bcabc72802e5c0811c2fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2832825729&rft_id=info:pmid/&rfr_iscdi=true