Loading…

Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis

Feature Selection (FS) for Sentiment Analysis (SA) becomes a complex problem because of the large-sized learning datasets. However, to reduce the data dimensionality, researchers have focused on FS using swarm intelligence approaches that reflect the best classification performance. Crocodiles Hunti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2023-01, Vol.45 (1), p.369-389
Main Authors: Bekhouche, Maamar, Haouassi, Hichem, Bakhouche, Abdelaali, Rahab, Hichem, Mahdaoui, Rafik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c219t-7074809d349d0b24848b5864de6e69547f9694f3efd8bca8f138fc0f31d73abf3
container_end_page 389
container_issue 1
container_start_page 369
container_title Journal of intelligent & fuzzy systems
container_volume 45
creator Bekhouche, Maamar
Haouassi, Hichem
Bakhouche, Abdelaali
Rahab, Hichem
Mahdaoui, Rafik
description Feature Selection (FS) for Sentiment Analysis (SA) becomes a complex problem because of the large-sized learning datasets. However, to reduce the data dimensionality, researchers have focused on FS using swarm intelligence approaches that reflect the best classification performance. Crocodiles Hunting Strategy (CHS), a novel swarm-based meta-heuristic that simulates the crocodiles’ hunting behaviour, has demonstrated excellent optimization results. Hence, in this work, two FS algorithms, i.e., Binary CHS (BCHS) and Improved BCHS (IBCHS) based on original CHS were applied for FS in the SA field. In IBCHS, the opposition-based learning technique is applied in the initialization and displacement phases to enhance the search space exploration ability of the IBCHS. The two proposed approaches were evaluated using six well-known corpora in the SA area (Semeval-2016, Semeval-2017, Sanders, Stanford, PMD, and MRD). The obtained result showed that IBCHS outperformed BCHS regarding search capability and convergence speed. The comparison results of IBCHS to several recent state-of-the-art approaches show that IBCHS surpassed other approaches in almost all used corpora. The comprehensive results reveal that the use of OBL in BCHS greatly impacts the performance of BCHS by enhancing the diversity of the population and the exploitation ability, which improves the convergence of the IBCHS.
doi_str_mv 10.3233/JIFS-222192
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2832826487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832826487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-7074809d349d0b24848b5864de6e69547f9694f3efd8bca8f138fc0f31d73abf3</originalsourceid><addsrcrecordid>eNotUEtLAzEYDKJgrZ78AwGPsprXJtmjFKuVggf1HLKbpKbsbmqSFeqvN7VevhfzDTMDwDVGd5RQev-yWr5VhBDckBMww1LUlWy4OC0z4qzChPFzcJHSFiEsaoJmwKyGXQzf1sDWjzruYRdDF4zvbYKf05j9uIEpR53tZg_DLvvB_-jswwhdiNBZnadoYbK97f6ufixLeRtKgXrU_T75dAnOnO6Tvfrvc_CxfHxfPFfr16fV4mFddUVxrgQSTKLGUNYY1BImmWxryZmx3PKmZsI1vGGOWmdk22npMJWuQ45iI6huHZ2DmyNvsfQ12ZTVNkyxiEiKSEok4UyKgro9oorVlKJ1ahf9ULwrjNQhRnWIUR1jpL_mJWc6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832826487</pqid></control><display><type>article</type><title>Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis</title><source>EBSCOhost Business Source Ultimate</source><creator>Bekhouche, Maamar ; Haouassi, Hichem ; Bakhouche, Abdelaali ; Rahab, Hichem ; Mahdaoui, Rafik</creator><creatorcontrib>Bekhouche, Maamar ; Haouassi, Hichem ; Bakhouche, Abdelaali ; Rahab, Hichem ; Mahdaoui, Rafik</creatorcontrib><description>Feature Selection (FS) for Sentiment Analysis (SA) becomes a complex problem because of the large-sized learning datasets. However, to reduce the data dimensionality, researchers have focused on FS using swarm intelligence approaches that reflect the best classification performance. Crocodiles Hunting Strategy (CHS), a novel swarm-based meta-heuristic that simulates the crocodiles’ hunting behaviour, has demonstrated excellent optimization results. Hence, in this work, two FS algorithms, i.e., Binary CHS (BCHS) and Improved BCHS (IBCHS) based on original CHS were applied for FS in the SA field. In IBCHS, the opposition-based learning technique is applied in the initialization and displacement phases to enhance the search space exploration ability of the IBCHS. The two proposed approaches were evaluated using six well-known corpora in the SA area (Semeval-2016, Semeval-2017, Sanders, Stanford, PMD, and MRD). The obtained result showed that IBCHS outperformed BCHS regarding search capability and convergence speed. The comparison results of IBCHS to several recent state-of-the-art approaches show that IBCHS surpassed other approaches in almost all used corpora. The comprehensive results reveal that the use of OBL in BCHS greatly impacts the performance of BCHS by enhancing the diversity of the population and the exploitation ability, which improves the convergence of the IBCHS.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-222192</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Convergence ; Crocodiles ; Data mining ; Feature selection ; Heuristic methods ; Hunting ; Learning ; Optimization ; Sentiment analysis ; Space exploration ; Swarm intelligence</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2023-01, Vol.45 (1), p.369-389</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-7074809d349d0b24848b5864de6e69547f9694f3efd8bca8f138fc0f31d73abf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bekhouche, Maamar</creatorcontrib><creatorcontrib>Haouassi, Hichem</creatorcontrib><creatorcontrib>Bakhouche, Abdelaali</creatorcontrib><creatorcontrib>Rahab, Hichem</creatorcontrib><creatorcontrib>Mahdaoui, Rafik</creatorcontrib><title>Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Feature Selection (FS) for Sentiment Analysis (SA) becomes a complex problem because of the large-sized learning datasets. However, to reduce the data dimensionality, researchers have focused on FS using swarm intelligence approaches that reflect the best classification performance. Crocodiles Hunting Strategy (CHS), a novel swarm-based meta-heuristic that simulates the crocodiles’ hunting behaviour, has demonstrated excellent optimization results. Hence, in this work, two FS algorithms, i.e., Binary CHS (BCHS) and Improved BCHS (IBCHS) based on original CHS were applied for FS in the SA field. In IBCHS, the opposition-based learning technique is applied in the initialization and displacement phases to enhance the search space exploration ability of the IBCHS. The two proposed approaches were evaluated using six well-known corpora in the SA area (Semeval-2016, Semeval-2017, Sanders, Stanford, PMD, and MRD). The obtained result showed that IBCHS outperformed BCHS regarding search capability and convergence speed. The comparison results of IBCHS to several recent state-of-the-art approaches show that IBCHS surpassed other approaches in almost all used corpora. The comprehensive results reveal that the use of OBL in BCHS greatly impacts the performance of BCHS by enhancing the diversity of the population and the exploitation ability, which improves the convergence of the IBCHS.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Crocodiles</subject><subject>Data mining</subject><subject>Feature selection</subject><subject>Heuristic methods</subject><subject>Hunting</subject><subject>Learning</subject><subject>Optimization</subject><subject>Sentiment analysis</subject><subject>Space exploration</subject><subject>Swarm intelligence</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotUEtLAzEYDKJgrZ78AwGPsprXJtmjFKuVggf1HLKbpKbsbmqSFeqvN7VevhfzDTMDwDVGd5RQev-yWr5VhBDckBMww1LUlWy4OC0z4qzChPFzcJHSFiEsaoJmwKyGXQzf1sDWjzruYRdDF4zvbYKf05j9uIEpR53tZg_DLvvB_-jswwhdiNBZnadoYbK97f6ufixLeRtKgXrU_T75dAnOnO6Tvfrvc_CxfHxfPFfr16fV4mFddUVxrgQSTKLGUNYY1BImmWxryZmx3PKmZsI1vGGOWmdk22npMJWuQ45iI6huHZ2DmyNvsfQ12ZTVNkyxiEiKSEok4UyKgro9oorVlKJ1ahf9ULwrjNQhRnWIUR1jpL_mJWc6</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Bekhouche, Maamar</creator><creator>Haouassi, Hichem</creator><creator>Bakhouche, Abdelaali</creator><creator>Rahab, Hichem</creator><creator>Mahdaoui, Rafik</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230101</creationdate><title>Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis</title><author>Bekhouche, Maamar ; Haouassi, Hichem ; Bakhouche, Abdelaali ; Rahab, Hichem ; Mahdaoui, Rafik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-7074809d349d0b24848b5864de6e69547f9694f3efd8bca8f138fc0f31d73abf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Crocodiles</topic><topic>Data mining</topic><topic>Feature selection</topic><topic>Heuristic methods</topic><topic>Hunting</topic><topic>Learning</topic><topic>Optimization</topic><topic>Sentiment analysis</topic><topic>Space exploration</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekhouche, Maamar</creatorcontrib><creatorcontrib>Haouassi, Hichem</creatorcontrib><creatorcontrib>Bakhouche, Abdelaali</creatorcontrib><creatorcontrib>Rahab, Hichem</creatorcontrib><creatorcontrib>Mahdaoui, Rafik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekhouche, Maamar</au><au>Haouassi, Hichem</au><au>Bakhouche, Abdelaali</au><au>Rahab, Hichem</au><au>Mahdaoui, Rafik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>45</volume><issue>1</issue><spage>369</spage><epage>389</epage><pages>369-389</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Feature Selection (FS) for Sentiment Analysis (SA) becomes a complex problem because of the large-sized learning datasets. However, to reduce the data dimensionality, researchers have focused on FS using swarm intelligence approaches that reflect the best classification performance. Crocodiles Hunting Strategy (CHS), a novel swarm-based meta-heuristic that simulates the crocodiles’ hunting behaviour, has demonstrated excellent optimization results. Hence, in this work, two FS algorithms, i.e., Binary CHS (BCHS) and Improved BCHS (IBCHS) based on original CHS were applied for FS in the SA field. In IBCHS, the opposition-based learning technique is applied in the initialization and displacement phases to enhance the search space exploration ability of the IBCHS. The two proposed approaches were evaluated using six well-known corpora in the SA area (Semeval-2016, Semeval-2017, Sanders, Stanford, PMD, and MRD). The obtained result showed that IBCHS outperformed BCHS regarding search capability and convergence speed. The comparison results of IBCHS to several recent state-of-the-art approaches show that IBCHS surpassed other approaches in almost all used corpora. The comprehensive results reveal that the use of OBL in BCHS greatly impacts the performance of BCHS by enhancing the diversity of the population and the exploitation ability, which improves the convergence of the IBCHS.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-222192</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2023-01, Vol.45 (1), p.369-389
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2832826487
source EBSCOhost Business Source Ultimate
subjects Algorithms
Convergence
Crocodiles
Data mining
Feature selection
Heuristic methods
Hunting
Learning
Optimization
Sentiment analysis
Space exploration
Swarm intelligence
title Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20binary%20crocodiles%20hunting%20strategy%20optimization%20for%20feature%20selection%20in%20sentiment%20analysis&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Bekhouche,%20Maamar&rft.date=2023-01-01&rft.volume=45&rft.issue=1&rft.spage=369&rft.epage=389&rft.pages=369-389&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-222192&rft_dat=%3Cproquest_cross%3E2832826487%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-7074809d349d0b24848b5864de6e69547f9694f3efd8bca8f138fc0f31d73abf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2832826487&rft_id=info:pmid/&rfr_iscdi=true