Loading…
Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis
Feature Selection (FS) for Sentiment Analysis (SA) becomes a complex problem because of the large-sized learning datasets. However, to reduce the data dimensionality, researchers have focused on FS using swarm intelligence approaches that reflect the best classification performance. Crocodiles Hunti...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2023-01, Vol.45 (1), p.369-389 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c219t-7074809d349d0b24848b5864de6e69547f9694f3efd8bca8f138fc0f31d73abf3 |
container_end_page | 389 |
container_issue | 1 |
container_start_page | 369 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 45 |
creator | Bekhouche, Maamar Haouassi, Hichem Bakhouche, Abdelaali Rahab, Hichem Mahdaoui, Rafik |
description | Feature Selection (FS) for Sentiment Analysis (SA) becomes a complex problem because of the large-sized learning datasets. However, to reduce the data dimensionality, researchers have focused on FS using swarm intelligence approaches that reflect the best classification performance. Crocodiles Hunting Strategy (CHS), a novel swarm-based meta-heuristic that simulates the crocodiles’ hunting behaviour, has demonstrated excellent optimization results. Hence, in this work, two FS algorithms, i.e., Binary CHS (BCHS) and Improved BCHS (IBCHS) based on original CHS were applied for FS in the SA field. In IBCHS, the opposition-based learning technique is applied in the initialization and displacement phases to enhance the search space exploration ability of the IBCHS. The two proposed approaches were evaluated using six well-known corpora in the SA area (Semeval-2016, Semeval-2017, Sanders, Stanford, PMD, and MRD). The obtained result showed that IBCHS outperformed BCHS regarding search capability and convergence speed. The comparison results of IBCHS to several recent state-of-the-art approaches show that IBCHS surpassed other approaches in almost all used corpora. The comprehensive results reveal that the use of OBL in BCHS greatly impacts the performance of BCHS by enhancing the diversity of the population and the exploitation ability, which improves the convergence of the IBCHS. |
doi_str_mv | 10.3233/JIFS-222192 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2832826487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832826487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-7074809d349d0b24848b5864de6e69547f9694f3efd8bca8f138fc0f31d73abf3</originalsourceid><addsrcrecordid>eNotUEtLAzEYDKJgrZ78AwGPsprXJtmjFKuVggf1HLKbpKbsbmqSFeqvN7VevhfzDTMDwDVGd5RQev-yWr5VhBDckBMww1LUlWy4OC0z4qzChPFzcJHSFiEsaoJmwKyGXQzf1sDWjzruYRdDF4zvbYKf05j9uIEpR53tZg_DLvvB_-jswwhdiNBZnadoYbK97f6ufixLeRtKgXrU_T75dAnOnO6Tvfrvc_CxfHxfPFfr16fV4mFddUVxrgQSTKLGUNYY1BImmWxryZmx3PKmZsI1vGGOWmdk22npMJWuQ45iI6huHZ2DmyNvsfQ12ZTVNkyxiEiKSEok4UyKgro9oorVlKJ1ahf9ULwrjNQhRnWIUR1jpL_mJWc6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832826487</pqid></control><display><type>article</type><title>Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis</title><source>EBSCOhost Business Source Ultimate</source><creator>Bekhouche, Maamar ; Haouassi, Hichem ; Bakhouche, Abdelaali ; Rahab, Hichem ; Mahdaoui, Rafik</creator><creatorcontrib>Bekhouche, Maamar ; Haouassi, Hichem ; Bakhouche, Abdelaali ; Rahab, Hichem ; Mahdaoui, Rafik</creatorcontrib><description>Feature Selection (FS) for Sentiment Analysis (SA) becomes a complex problem because of the large-sized learning datasets. However, to reduce the data dimensionality, researchers have focused on FS using swarm intelligence approaches that reflect the best classification performance. Crocodiles Hunting Strategy (CHS), a novel swarm-based meta-heuristic that simulates the crocodiles’ hunting behaviour, has demonstrated excellent optimization results. Hence, in this work, two FS algorithms, i.e., Binary CHS (BCHS) and Improved BCHS (IBCHS) based on original CHS were applied for FS in the SA field. In IBCHS, the opposition-based learning technique is applied in the initialization and displacement phases to enhance the search space exploration ability of the IBCHS. The two proposed approaches were evaluated using six well-known corpora in the SA area (Semeval-2016, Semeval-2017, Sanders, Stanford, PMD, and MRD). The obtained result showed that IBCHS outperformed BCHS regarding search capability and convergence speed. The comparison results of IBCHS to several recent state-of-the-art approaches show that IBCHS surpassed other approaches in almost all used corpora. The comprehensive results reveal that the use of OBL in BCHS greatly impacts the performance of BCHS by enhancing the diversity of the population and the exploitation ability, which improves the convergence of the IBCHS.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-222192</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Convergence ; Crocodiles ; Data mining ; Feature selection ; Heuristic methods ; Hunting ; Learning ; Optimization ; Sentiment analysis ; Space exploration ; Swarm intelligence</subject><ispartof>Journal of intelligent & fuzzy systems, 2023-01, Vol.45 (1), p.369-389</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-7074809d349d0b24848b5864de6e69547f9694f3efd8bca8f138fc0f31d73abf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bekhouche, Maamar</creatorcontrib><creatorcontrib>Haouassi, Hichem</creatorcontrib><creatorcontrib>Bakhouche, Abdelaali</creatorcontrib><creatorcontrib>Rahab, Hichem</creatorcontrib><creatorcontrib>Mahdaoui, Rafik</creatorcontrib><title>Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis</title><title>Journal of intelligent & fuzzy systems</title><description>Feature Selection (FS) for Sentiment Analysis (SA) becomes a complex problem because of the large-sized learning datasets. However, to reduce the data dimensionality, researchers have focused on FS using swarm intelligence approaches that reflect the best classification performance. Crocodiles Hunting Strategy (CHS), a novel swarm-based meta-heuristic that simulates the crocodiles’ hunting behaviour, has demonstrated excellent optimization results. Hence, in this work, two FS algorithms, i.e., Binary CHS (BCHS) and Improved BCHS (IBCHS) based on original CHS were applied for FS in the SA field. In IBCHS, the opposition-based learning technique is applied in the initialization and displacement phases to enhance the search space exploration ability of the IBCHS. The two proposed approaches were evaluated using six well-known corpora in the SA area (Semeval-2016, Semeval-2017, Sanders, Stanford, PMD, and MRD). The obtained result showed that IBCHS outperformed BCHS regarding search capability and convergence speed. The comparison results of IBCHS to several recent state-of-the-art approaches show that IBCHS surpassed other approaches in almost all used corpora. The comprehensive results reveal that the use of OBL in BCHS greatly impacts the performance of BCHS by enhancing the diversity of the population and the exploitation ability, which improves the convergence of the IBCHS.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Crocodiles</subject><subject>Data mining</subject><subject>Feature selection</subject><subject>Heuristic methods</subject><subject>Hunting</subject><subject>Learning</subject><subject>Optimization</subject><subject>Sentiment analysis</subject><subject>Space exploration</subject><subject>Swarm intelligence</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotUEtLAzEYDKJgrZ78AwGPsprXJtmjFKuVggf1HLKbpKbsbmqSFeqvN7VevhfzDTMDwDVGd5RQev-yWr5VhBDckBMww1LUlWy4OC0z4qzChPFzcJHSFiEsaoJmwKyGXQzf1sDWjzruYRdDF4zvbYKf05j9uIEpR53tZg_DLvvB_-jswwhdiNBZnadoYbK97f6ufixLeRtKgXrU_T75dAnOnO6Tvfrvc_CxfHxfPFfr16fV4mFddUVxrgQSTKLGUNYY1BImmWxryZmx3PKmZsI1vGGOWmdk22npMJWuQ45iI6huHZ2DmyNvsfQ12ZTVNkyxiEiKSEok4UyKgro9oorVlKJ1ahf9ULwrjNQhRnWIUR1jpL_mJWc6</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Bekhouche, Maamar</creator><creator>Haouassi, Hichem</creator><creator>Bakhouche, Abdelaali</creator><creator>Rahab, Hichem</creator><creator>Mahdaoui, Rafik</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230101</creationdate><title>Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis</title><author>Bekhouche, Maamar ; Haouassi, Hichem ; Bakhouche, Abdelaali ; Rahab, Hichem ; Mahdaoui, Rafik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-7074809d349d0b24848b5864de6e69547f9694f3efd8bca8f138fc0f31d73abf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Crocodiles</topic><topic>Data mining</topic><topic>Feature selection</topic><topic>Heuristic methods</topic><topic>Hunting</topic><topic>Learning</topic><topic>Optimization</topic><topic>Sentiment analysis</topic><topic>Space exploration</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekhouche, Maamar</creatorcontrib><creatorcontrib>Haouassi, Hichem</creatorcontrib><creatorcontrib>Bakhouche, Abdelaali</creatorcontrib><creatorcontrib>Rahab, Hichem</creatorcontrib><creatorcontrib>Mahdaoui, Rafik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekhouche, Maamar</au><au>Haouassi, Hichem</au><au>Bakhouche, Abdelaali</au><au>Rahab, Hichem</au><au>Mahdaoui, Rafik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>45</volume><issue>1</issue><spage>369</spage><epage>389</epage><pages>369-389</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Feature Selection (FS) for Sentiment Analysis (SA) becomes a complex problem because of the large-sized learning datasets. However, to reduce the data dimensionality, researchers have focused on FS using swarm intelligence approaches that reflect the best classification performance. Crocodiles Hunting Strategy (CHS), a novel swarm-based meta-heuristic that simulates the crocodiles’ hunting behaviour, has demonstrated excellent optimization results. Hence, in this work, two FS algorithms, i.e., Binary CHS (BCHS) and Improved BCHS (IBCHS) based on original CHS were applied for FS in the SA field. In IBCHS, the opposition-based learning technique is applied in the initialization and displacement phases to enhance the search space exploration ability of the IBCHS. The two proposed approaches were evaluated using six well-known corpora in the SA area (Semeval-2016, Semeval-2017, Sanders, Stanford, PMD, and MRD). The obtained result showed that IBCHS outperformed BCHS regarding search capability and convergence speed. The comparison results of IBCHS to several recent state-of-the-art approaches show that IBCHS surpassed other approaches in almost all used corpora. The comprehensive results reveal that the use of OBL in BCHS greatly impacts the performance of BCHS by enhancing the diversity of the population and the exploitation ability, which improves the convergence of the IBCHS.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-222192</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2023-01, Vol.45 (1), p.369-389 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2832826487 |
source | EBSCOhost Business Source Ultimate |
subjects | Algorithms Convergence Crocodiles Data mining Feature selection Heuristic methods Hunting Learning Optimization Sentiment analysis Space exploration Swarm intelligence |
title | Improved binary crocodiles hunting strategy optimization for feature selection in sentiment analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20binary%20crocodiles%20hunting%20strategy%20optimization%20for%20feature%20selection%20in%20sentiment%20analysis&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Bekhouche,%20Maamar&rft.date=2023-01-01&rft.volume=45&rft.issue=1&rft.spage=369&rft.epage=389&rft.pages=369-389&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-222192&rft_dat=%3Cproquest_cross%3E2832826487%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-7074809d349d0b24848b5864de6e69547f9694f3efd8bca8f138fc0f31d73abf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2832826487&rft_id=info:pmid/&rfr_iscdi=true |