Loading…

A review of uranium-based thin films

Thin films based on silicon and transition-metal elements dominate the semiconducting industry and are ubiquitous in all modern devices. Films have also been produced in the rare-earth series of elements for both research and specialized applications. Thin films of uranium and uranium dioxide were f...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-07
Main Authors: Springell, R, Bright, E Lawrence, Chaney, D A, Harding, L M, Bell, C, Ward, R C C, Lander, G H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thin films based on silicon and transition-metal elements dominate the semiconducting industry and are ubiquitous in all modern devices. Films have also been produced in the rare-earth series of elements for both research and specialized applications. Thin films of uranium and uranium dioxide were fabricated in the 1960s and 1970s, but there was little sustained effort until the early 2000s. Significant programmes started at Oxford University (transferring to Bristol University in 2011), and Los Alamos National Laboratory (LANL) in New Mexico, USA. In this review we cover the work that has been published over the last ~20 years with these materials. Important breakthroughs occurred with the fabrication of epitaxial thin films of initially uranium metal and UO2, but more recently of many other uranium compounds and alloys. These have led to a number of different experiments that are reviewed, as well as some important trends. The interaction with the substrate leads to differing strain and hence changes in properties. An important advantage is that epitaxial films can often be made of materials that are impossible to produce as bulk single crystals. Examples are U3O8, U2N3 and alloys of U-Mo, which form in a modified bcc structure. Epitaxial films may also be used in applied research. They represent excellent surfaces, and it is at the surfaces that most of the important reactions occur in the nuclear fuel cycle. For example, the fuel-cladding interactions, and the dissolution of fuel by water in the long-term storage of spent fuel. To conclude, we discuss possible future prospects, examples include bilayers containing uranium for spintronics, and superlattices that could be used in heterostructures. Such applications will require a more detailed knowledge of the interface interactions in these systems, and this is an important direction for future research.
ISSN:2331-8422