Loading…

Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm

We consider minimizing a smooth function subject to a summation constraint over its variables. By exploiting a connection between the greedy 2-coordinate update for this problem and equality-constrained steepest descent in the 1-norm, we give a convergence rate for greedy selection under a proximal...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-07
Main Authors: Ramesh, Amrutha Varshini, Mishkin, Aaron, Schmidt, Mark, Zhou, Yihan, Jonathan Wilder Lavington, She, Jennifer
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ramesh, Amrutha Varshini
Mishkin, Aaron
Schmidt, Mark
Zhou, Yihan
Jonathan Wilder Lavington
She, Jennifer
description We consider minimizing a smooth function subject to a summation constraint over its variables. By exploiting a connection between the greedy 2-coordinate update for this problem and equality-constrained steepest descent in the 1-norm, we give a convergence rate for greedy selection under a proximal Polyak-Lojasiewicz assumption that is faster than random selection and independent of the problem dimension \(n\). We then consider minimizing with both a summation constraint and bound constraints, as arises in the support vector machine dual problem. Existing greedy rules for this setting either guarantee trivial progress only or require \(O(n^2)\) time to compute. We show that bound- and summation-constrained steepest descent in the L1-norm guarantees more progress per iteration than previous rules and can be computed in only \(O(n \log n)\) time.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2832897437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832897437</sourcerecordid><originalsourceid>FETCH-proquest_journals_28328974373</originalsourceid><addsrcrecordid>eNqNjs1qwzAQhEWgkNDmHRZyNjhSUrvHkL_20hzSnoOo1ukae-VI64BDH74q9AFy-hhmBr6Rmmhj5lm50HqspjHWeZ7r50Ivl2aiflZsm-FGfAbLDt7aLvjrX9oHRDeAztbeB0dsBeGzcwkRKh9ge-ltQzKknqMES4wODp1QSzcr5BmuZOEoiB1GgQ3GL2QBYpBvhHn27kP7pB4q20Sc_vNRzXbbj_VrliQufbqdat-HJBhPujS6fCkWpjD3rX4BsZ1PCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832897437</pqid></control><display><type>article</type><title>Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm</title><source>Publicly Available Content Database</source><creator>Ramesh, Amrutha Varshini ; Mishkin, Aaron ; Schmidt, Mark ; Zhou, Yihan ; Jonathan Wilder Lavington ; She, Jennifer</creator><creatorcontrib>Ramesh, Amrutha Varshini ; Mishkin, Aaron ; Schmidt, Mark ; Zhou, Yihan ; Jonathan Wilder Lavington ; She, Jennifer</creatorcontrib><description>We consider minimizing a smooth function subject to a summation constraint over its variables. By exploiting a connection between the greedy 2-coordinate update for this problem and equality-constrained steepest descent in the 1-norm, we give a convergence rate for greedy selection under a proximal Polyak-Lojasiewicz assumption that is faster than random selection and independent of the problem dimension \(n\). We then consider minimizing with both a summation constraint and bound constraints, as arises in the support vector machine dual problem. Existing greedy rules for this setting either guarantee trivial progress only or require \(O(n^2)\) time to compute. We show that bound- and summation-constrained steepest descent in the L1-norm guarantees more progress per iteration than previous rules and can be computed in only \(O(n \log n)\) time.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Constraints ; Iterative methods ; Optimization ; Support vector machines</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2832897437?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Ramesh, Amrutha Varshini</creatorcontrib><creatorcontrib>Mishkin, Aaron</creatorcontrib><creatorcontrib>Schmidt, Mark</creatorcontrib><creatorcontrib>Zhou, Yihan</creatorcontrib><creatorcontrib>Jonathan Wilder Lavington</creatorcontrib><creatorcontrib>She, Jennifer</creatorcontrib><title>Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm</title><title>arXiv.org</title><description>We consider minimizing a smooth function subject to a summation constraint over its variables. By exploiting a connection between the greedy 2-coordinate update for this problem and equality-constrained steepest descent in the 1-norm, we give a convergence rate for greedy selection under a proximal Polyak-Lojasiewicz assumption that is faster than random selection and independent of the problem dimension \(n\). We then consider minimizing with both a summation constraint and bound constraints, as arises in the support vector machine dual problem. Existing greedy rules for this setting either guarantee trivial progress only or require \(O(n^2)\) time to compute. We show that bound- and summation-constrained steepest descent in the L1-norm guarantees more progress per iteration than previous rules and can be computed in only \(O(n \log n)\) time.</description><subject>Constraints</subject><subject>Iterative methods</subject><subject>Optimization</subject><subject>Support vector machines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjs1qwzAQhEWgkNDmHRZyNjhSUrvHkL_20hzSnoOo1ukae-VI64BDH74q9AFy-hhmBr6Rmmhj5lm50HqspjHWeZ7r50Ivl2aiflZsm-FGfAbLDt7aLvjrX9oHRDeAztbeB0dsBeGzcwkRKh9ge-ltQzKknqMES4wODp1QSzcr5BmuZOEoiB1GgQ3GL2QBYpBvhHn27kP7pB4q20Sc_vNRzXbbj_VrliQufbqdat-HJBhPujS6fCkWpjD3rX4BsZ1PCw</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Ramesh, Amrutha Varshini</creator><creator>Mishkin, Aaron</creator><creator>Schmidt, Mark</creator><creator>Zhou, Yihan</creator><creator>Jonathan Wilder Lavington</creator><creator>She, Jennifer</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230703</creationdate><title>Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm</title><author>Ramesh, Amrutha Varshini ; Mishkin, Aaron ; Schmidt, Mark ; Zhou, Yihan ; Jonathan Wilder Lavington ; She, Jennifer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28328974373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Constraints</topic><topic>Iterative methods</topic><topic>Optimization</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramesh, Amrutha Varshini</creatorcontrib><creatorcontrib>Mishkin, Aaron</creatorcontrib><creatorcontrib>Schmidt, Mark</creatorcontrib><creatorcontrib>Zhou, Yihan</creatorcontrib><creatorcontrib>Jonathan Wilder Lavington</creatorcontrib><creatorcontrib>She, Jennifer</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramesh, Amrutha Varshini</au><au>Mishkin, Aaron</au><au>Schmidt, Mark</au><au>Zhou, Yihan</au><au>Jonathan Wilder Lavington</au><au>She, Jennifer</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm</atitle><jtitle>arXiv.org</jtitle><date>2023-07-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider minimizing a smooth function subject to a summation constraint over its variables. By exploiting a connection between the greedy 2-coordinate update for this problem and equality-constrained steepest descent in the 1-norm, we give a convergence rate for greedy selection under a proximal Polyak-Lojasiewicz assumption that is faster than random selection and independent of the problem dimension \(n\). We then consider minimizing with both a summation constraint and bound constraints, as arises in the support vector machine dual problem. Existing greedy rules for this setting either guarantee trivial progress only or require \(O(n^2)\) time to compute. We show that bound- and summation-constrained steepest descent in the L1-norm guarantees more progress per iteration than previous rules and can be computed in only \(O(n \log n)\) time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2832897437
source Publicly Available Content Database
subjects Constraints
Iterative methods
Optimization
Support vector machines
title Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Analyzing%20and%20Improving%20Greedy%202-Coordinate%20Updates%20for%20Equality-Constrained%20Optimization%20via%20Steepest%20Descent%20in%20the%201-Norm&rft.jtitle=arXiv.org&rft.au=Ramesh,%20Amrutha%20Varshini&rft.date=2023-07-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2832897437%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28328974373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2832897437&rft_id=info:pmid/&rfr_iscdi=true