Loading…

PEDOT: PSS for Reinforced Performances of Co/Ni-MOF as Flexible Supercapacitor Electrodes

To overcome the limitations of low conductivity and poor stability of metal–organic framework materials (MOFs) used in flexible supercapacitors, a high-performance flexible electrode material has been prepared by combining the conductive polymer poly (3,4-ethylenedioxythiophene):poly(styrene sulfona...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2023-08, Vol.52 (8), p.5543-5553
Main Authors: Jiang, Wenkun, Han, Yinghui, Yu, Xiaole, Xu, Yanmei, Wang, Lijing, Zhang, Xin, Qin, Xiaodong, Zhu, Yongqi, Zhang, Yuanxun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e02b0cd55e4999fcbac90733ba32f46859af4f3bd414c5412944fda04fdadb753
cites cdi_FETCH-LOGICAL-c319t-e02b0cd55e4999fcbac90733ba32f46859af4f3bd414c5412944fda04fdadb753
container_end_page 5553
container_issue 8
container_start_page 5543
container_title Journal of electronic materials
container_volume 52
creator Jiang, Wenkun
Han, Yinghui
Yu, Xiaole
Xu, Yanmei
Wang, Lijing
Zhang, Xin
Qin, Xiaodong
Zhu, Yongqi
Zhang, Yuanxun
description To overcome the limitations of low conductivity and poor stability of metal–organic framework materials (MOFs) used in flexible supercapacitors, a high-performance flexible electrode material has been prepared by combining the conductive polymer poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with a cobalt and nickel bimetallic organic framework (Co/Ni-MOF). The optimal formula of the fabricated MOF-based electrode material was determined by screening tests of different metal pairwise combinations and the tuning of mutual ratios. The characterizations of x-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDS) indicated that PEDOT:PSS wraps around the surface of Co/Ni-MOF and encapsulates it internally, which helps to increase the electrochemical surface active area between ions/electrons and the electrolyte, consequently forming a high-performance complex called PEDOT:PSS@Co/Ni-MOF in a homogeneous crystal consistent with that of Co/Ni-MOF. In the presence of PEDOT:PSS, the specific capacitance was up to 860.5 F g −1 , which is 366.5 F g −1 higher than that of Co/Ni-MOF without PEDOT:PSS at the same current density of 494 F g −1 . The electrode assembled from PEDOT:PSS@Co/Ni-MOF has a very high energy density of 38.24 Wh kg −1 , while its power density is as high as 402.06 W kg −1 . Broadly, the combination of conductive polymer and MOFs can improve the capacitance performance, electrical conductivity, and tensile properties of the MOFs, which provides a promising new strategy to improve the capacitance performance of metal–organic framework materials, and can be extended to other metallic oxide materials. Graphical Abstract
doi_str_mv 10.1007/s11664-023-10507-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2833354651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833354651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e02b0cd55e4999fcbac90733ba32f46859af4f3bd414c5412944fda04fdadb753</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKeAz3G5zZ-2vsncVFA33AR9CmmaSEfX1qQD_fZmVvDNl3vuhXPOhR9C50AvgdJ0EgCk5IQmjAAVNCXyAI1A8Hhm8vUQjSiTQETCxDE6CWFDKQjIYITelrObxfoKL1cr7FqPn23VRDW2xEvr47bVjbEBtw5P28lTRR4Xc6wDntf2sypqi1e7znqjO22qPuZntTW9b0sbTtGR03WwZ786Ri_z2Xp6Rx4Wt_fT6wdiGOQ9sTQpqCmFsDzPc2cKbXKaMlZoljguM5Frxx0rSg7cCA5JzrkrNd2PskgFG6OLobfz7cfOhl5t2p1v4kuVZIwxwaWA6EoGl_FtCN461flqq_2XAqr2CNWAUEWE6gehkjHEhlCI5ubd-r_qf1Lf9a1y9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833354651</pqid></control><display><type>article</type><title>PEDOT: PSS for Reinforced Performances of Co/Ni-MOF as Flexible Supercapacitor Electrodes</title><source>Springer Nature</source><creator>Jiang, Wenkun ; Han, Yinghui ; Yu, Xiaole ; Xu, Yanmei ; Wang, Lijing ; Zhang, Xin ; Qin, Xiaodong ; Zhu, Yongqi ; Zhang, Yuanxun</creator><creatorcontrib>Jiang, Wenkun ; Han, Yinghui ; Yu, Xiaole ; Xu, Yanmei ; Wang, Lijing ; Zhang, Xin ; Qin, Xiaodong ; Zhu, Yongqi ; Zhang, Yuanxun</creatorcontrib><description>To overcome the limitations of low conductivity and poor stability of metal–organic framework materials (MOFs) used in flexible supercapacitors, a high-performance flexible electrode material has been prepared by combining the conductive polymer poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with a cobalt and nickel bimetallic organic framework (Co/Ni-MOF). The optimal formula of the fabricated MOF-based electrode material was determined by screening tests of different metal pairwise combinations and the tuning of mutual ratios. The characterizations of x-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDS) indicated that PEDOT:PSS wraps around the surface of Co/Ni-MOF and encapsulates it internally, which helps to increase the electrochemical surface active area between ions/electrons and the electrolyte, consequently forming a high-performance complex called PEDOT:PSS@Co/Ni-MOF in a homogeneous crystal consistent with that of Co/Ni-MOF. In the presence of PEDOT:PSS, the specific capacitance was up to 860.5 F g −1 , which is 366.5 F g −1 higher than that of Co/Ni-MOF without PEDOT:PSS at the same current density of 494 F g −1 . The electrode assembled from PEDOT:PSS@Co/Ni-MOF has a very high energy density of 38.24 Wh kg −1 , while its power density is as high as 402.06 W kg −1 . Broadly, the combination of conductive polymer and MOFs can improve the capacitance performance, electrical conductivity, and tensile properties of the MOFs, which provides a promising new strategy to improve the capacitance performance of metal–organic framework materials, and can be extended to other metallic oxide materials. Graphical Abstract</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10507-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bimetals ; Capacitance ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cobalt ; Conducting polymers ; Electrical resistivity ; Electrode materials ; Electrodes ; Electron microscopes ; Electron microscopy ; Electronics and Microelectronics ; Instrumentation ; Low conductivity ; Materials Science ; Metal oxides ; Metal-organic frameworks ; Microscopy ; Nickel ; Optical and Electronic Materials ; Original Research Article ; Polystyrene resins ; Solid State Physics ; Supercapacitors ; Tensile properties</subject><ispartof>Journal of electronic materials, 2023-08, Vol.52 (8), p.5543-5553</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e02b0cd55e4999fcbac90733ba32f46859af4f3bd414c5412944fda04fdadb753</citedby><cites>FETCH-LOGICAL-c319t-e02b0cd55e4999fcbac90733ba32f46859af4f3bd414c5412944fda04fdadb753</cites><orcidid>0000-0002-2167-7024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jiang, Wenkun</creatorcontrib><creatorcontrib>Han, Yinghui</creatorcontrib><creatorcontrib>Yu, Xiaole</creatorcontrib><creatorcontrib>Xu, Yanmei</creatorcontrib><creatorcontrib>Wang, Lijing</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Qin, Xiaodong</creatorcontrib><creatorcontrib>Zhu, Yongqi</creatorcontrib><creatorcontrib>Zhang, Yuanxun</creatorcontrib><title>PEDOT: PSS for Reinforced Performances of Co/Ni-MOF as Flexible Supercapacitor Electrodes</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>To overcome the limitations of low conductivity and poor stability of metal–organic framework materials (MOFs) used in flexible supercapacitors, a high-performance flexible electrode material has been prepared by combining the conductive polymer poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with a cobalt and nickel bimetallic organic framework (Co/Ni-MOF). The optimal formula of the fabricated MOF-based electrode material was determined by screening tests of different metal pairwise combinations and the tuning of mutual ratios. The characterizations of x-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDS) indicated that PEDOT:PSS wraps around the surface of Co/Ni-MOF and encapsulates it internally, which helps to increase the electrochemical surface active area between ions/electrons and the electrolyte, consequently forming a high-performance complex called PEDOT:PSS@Co/Ni-MOF in a homogeneous crystal consistent with that of Co/Ni-MOF. In the presence of PEDOT:PSS, the specific capacitance was up to 860.5 F g −1 , which is 366.5 F g −1 higher than that of Co/Ni-MOF without PEDOT:PSS at the same current density of 494 F g −1 . The electrode assembled from PEDOT:PSS@Co/Ni-MOF has a very high energy density of 38.24 Wh kg −1 , while its power density is as high as 402.06 W kg −1 . Broadly, the combination of conductive polymer and MOFs can improve the capacitance performance, electrical conductivity, and tensile properties of the MOFs, which provides a promising new strategy to improve the capacitance performance of metal–organic framework materials, and can be extended to other metallic oxide materials. Graphical Abstract</description><subject>Bimetals</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Conducting polymers</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Low conductivity</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Metal-organic frameworks</subject><subject>Microscopy</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Polystyrene resins</subject><subject>Solid State Physics</subject><subject>Supercapacitors</subject><subject>Tensile properties</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKdfwKeAz3G5zZ-2vsncVFA33AR9CmmaSEfX1qQD_fZmVvDNl3vuhXPOhR9C50AvgdJ0EgCk5IQmjAAVNCXyAI1A8Hhm8vUQjSiTQETCxDE6CWFDKQjIYITelrObxfoKL1cr7FqPn23VRDW2xEvr47bVjbEBtw5P28lTRR4Xc6wDntf2sypqi1e7znqjO22qPuZntTW9b0sbTtGR03WwZ786Ri_z2Xp6Rx4Wt_fT6wdiGOQ9sTQpqCmFsDzPc2cKbXKaMlZoljguM5Frxx0rSg7cCA5JzrkrNd2PskgFG6OLobfz7cfOhl5t2p1v4kuVZIwxwaWA6EoGl_FtCN461flqq_2XAqr2CNWAUEWE6gehkjHEhlCI5ubd-r_qf1Lf9a1y9g</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Jiang, Wenkun</creator><creator>Han, Yinghui</creator><creator>Yu, Xiaole</creator><creator>Xu, Yanmei</creator><creator>Wang, Lijing</creator><creator>Zhang, Xin</creator><creator>Qin, Xiaodong</creator><creator>Zhu, Yongqi</creator><creator>Zhang, Yuanxun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-2167-7024</orcidid></search><sort><creationdate>20230801</creationdate><title>PEDOT: PSS for Reinforced Performances of Co/Ni-MOF as Flexible Supercapacitor Electrodes</title><author>Jiang, Wenkun ; Han, Yinghui ; Yu, Xiaole ; Xu, Yanmei ; Wang, Lijing ; Zhang, Xin ; Qin, Xiaodong ; Zhu, Yongqi ; Zhang, Yuanxun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e02b0cd55e4999fcbac90733ba32f46859af4f3bd414c5412944fda04fdadb753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bimetals</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Conducting polymers</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Low conductivity</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Metal-organic frameworks</topic><topic>Microscopy</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Polystyrene resins</topic><topic>Solid State Physics</topic><topic>Supercapacitors</topic><topic>Tensile properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wenkun</creatorcontrib><creatorcontrib>Han, Yinghui</creatorcontrib><creatorcontrib>Yu, Xiaole</creatorcontrib><creatorcontrib>Xu, Yanmei</creatorcontrib><creatorcontrib>Wang, Lijing</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Qin, Xiaodong</creatorcontrib><creatorcontrib>Zhu, Yongqi</creatorcontrib><creatorcontrib>Zhang, Yuanxun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Proquest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wenkun</au><au>Han, Yinghui</au><au>Yu, Xiaole</au><au>Xu, Yanmei</au><au>Wang, Lijing</au><au>Zhang, Xin</au><au>Qin, Xiaodong</au><au>Zhu, Yongqi</au><au>Zhang, Yuanxun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PEDOT: PSS for Reinforced Performances of Co/Ni-MOF as Flexible Supercapacitor Electrodes</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>52</volume><issue>8</issue><spage>5543</spage><epage>5553</epage><pages>5543-5553</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>To overcome the limitations of low conductivity and poor stability of metal–organic framework materials (MOFs) used in flexible supercapacitors, a high-performance flexible electrode material has been prepared by combining the conductive polymer poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with a cobalt and nickel bimetallic organic framework (Co/Ni-MOF). The optimal formula of the fabricated MOF-based electrode material was determined by screening tests of different metal pairwise combinations and the tuning of mutual ratios. The characterizations of x-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDS) indicated that PEDOT:PSS wraps around the surface of Co/Ni-MOF and encapsulates it internally, which helps to increase the electrochemical surface active area between ions/electrons and the electrolyte, consequently forming a high-performance complex called PEDOT:PSS@Co/Ni-MOF in a homogeneous crystal consistent with that of Co/Ni-MOF. In the presence of PEDOT:PSS, the specific capacitance was up to 860.5 F g −1 , which is 366.5 F g −1 higher than that of Co/Ni-MOF without PEDOT:PSS at the same current density of 494 F g −1 . The electrode assembled from PEDOT:PSS@Co/Ni-MOF has a very high energy density of 38.24 Wh kg −1 , while its power density is as high as 402.06 W kg −1 . Broadly, the combination of conductive polymer and MOFs can improve the capacitance performance, electrical conductivity, and tensile properties of the MOFs, which provides a promising new strategy to improve the capacitance performance of metal–organic framework materials, and can be extended to other metallic oxide materials. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10507-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2167-7024</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023-08, Vol.52 (8), p.5543-5553
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2833354651
source Springer Nature
subjects Bimetals
Capacitance
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cobalt
Conducting polymers
Electrical resistivity
Electrode materials
Electrodes
Electron microscopes
Electron microscopy
Electronics and Microelectronics
Instrumentation
Low conductivity
Materials Science
Metal oxides
Metal-organic frameworks
Microscopy
Nickel
Optical and Electronic Materials
Original Research Article
Polystyrene resins
Solid State Physics
Supercapacitors
Tensile properties
title PEDOT: PSS for Reinforced Performances of Co/Ni-MOF as Flexible Supercapacitor Electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PEDOT:%20PSS%20for%20Reinforced%20Performances%20of%20Co/Ni-MOF%20as%20Flexible%20Supercapacitor%20Electrodes&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Jiang,%20Wenkun&rft.date=2023-08-01&rft.volume=52&rft.issue=8&rft.spage=5543&rft.epage=5553&rft.pages=5543-5553&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10507-6&rft_dat=%3Cproquest_cross%3E2833354651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e02b0cd55e4999fcbac90733ba32f46859af4f3bd414c5412944fda04fdadb753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2833354651&rft_id=info:pmid/&rfr_iscdi=true