Loading…
Estimating the Amount of Sparsity in Two-Point Mixture Models
We consider the problem of estimating the fraction of nonzero means in a sparse normal mixture model in the region where variable selection is possible. The focus is on the situation in which the proportion of nonzero means is very small. The proposed estimator is shown to be nearly rate optimal in...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-07, Vol.273 (5), p.705-721 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3687-3d6c8e50e19d130db130eb36112d30796a5d70196f12e9e6471283073e16a5d13 |
container_end_page | 721 |
container_issue | 5 |
container_start_page | 705 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 273 |
creator | Wang, Yibo Stepanova, N. A. |
description | We consider the problem of estimating the fraction of nonzero means in a sparse normal mixture model in the region where variable selection is possible. The focus is on the situation in which the proportion of nonzero means is very small. The proposed estimator is shown to be nearly rate optimal in the asymptotically minimax sense. Using this estimator, one can also consistently estimate the sparsity parameter in sparse normal mixtures, whose knowledge, in particular, is required to carry out the so-called almost full variable selection procedure. The advantage of using the new estimator is illustrated analytically and numerically. The obtained results can be extended to some nonnormal mixtures. |
doi_str_mv | 10.1007/s10958-023-06534-7 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2834155090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A757804059</galeid><sourcerecordid>A757804059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3687-3d6c8e50e19d130db130eb36112d30796a5d70196f12e9e6471283073e16a5d13</originalsourceid><addsrcrecordid>eNp9kUFLwzAYhosoOKd_wFPBk4fML03TtAcPY0wdbChunkPXfq0ZWzOTFLd_b-aEMRgSSELe50kgbxDcUuhRAPFgKWQ8JRAxAglnMRFnQYdywUgqMn7u9yAiwpiIL4MraxfgpSRlneBxaJ1a5U41deg-MeyvdNu4UFfhdJ0bq9w2VE04-9bkTSsfTNTGtQbDiS5xaa-DiypfWrz5W7vBx9NwNngh49fn0aA_JgVLUkFYmRQpckCalZRBOfcTzllCaVQyEFmS81IAzZKKRphhEgsapT5gSHcRZd3gbn_v2uivFq2TC92axj8pPRhTziGDA1XnS5SqqbQzebFStpB9wUUKMfDMU-QEVWODJl_qBivlj4_43gnejxJXqjgp3B8JnnG4cXXeWitH0_djNtqzhdHWGqzk2vg6zFZSkLtm5b5Z6ZuVv81K4SW2l6yHmxrN4Tf-sX4AXeSgug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834155090</pqid></control><display><type>article</type><title>Estimating the Amount of Sparsity in Two-Point Mixture Models</title><source>Springer Link</source><creator>Wang, Yibo ; Stepanova, N. A.</creator><creatorcontrib>Wang, Yibo ; Stepanova, N. A.</creatorcontrib><description>We consider the problem of estimating the fraction of nonzero means in a sparse normal mixture model in the region where variable selection is possible. The focus is on the situation in which the proportion of nonzero means is very small. The proposed estimator is shown to be nearly rate optimal in the asymptotically minimax sense. Using this estimator, one can also consistently estimate the sparsity parameter in sparse normal mixtures, whose knowledge, in particular, is required to carry out the so-called almost full variable selection procedure. The advantage of using the new estimator is illustrated analytically and numerically. The obtained results can be extended to some nonnormal mixtures.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06534-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Minimax technique ; Mixtures</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-07, Vol.273 (5), p.705-721</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3687-3d6c8e50e19d130db130eb36112d30796a5d70196f12e9e6471283073e16a5d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yibo</creatorcontrib><creatorcontrib>Stepanova, N. A.</creatorcontrib><title>Estimating the Amount of Sparsity in Two-Point Mixture Models</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider the problem of estimating the fraction of nonzero means in a sparse normal mixture model in the region where variable selection is possible. The focus is on the situation in which the proportion of nonzero means is very small. The proposed estimator is shown to be nearly rate optimal in the asymptotically minimax sense. Using this estimator, one can also consistently estimate the sparsity parameter in sparse normal mixtures, whose knowledge, in particular, is required to carry out the so-called almost full variable selection procedure. The advantage of using the new estimator is illustrated analytically and numerically. The obtained results can be extended to some nonnormal mixtures.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimax technique</subject><subject>Mixtures</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFLwzAYhosoOKd_wFPBk4fML03TtAcPY0wdbChunkPXfq0ZWzOTFLd_b-aEMRgSSELe50kgbxDcUuhRAPFgKWQ8JRAxAglnMRFnQYdywUgqMn7u9yAiwpiIL4MraxfgpSRlneBxaJ1a5U41deg-MeyvdNu4UFfhdJ0bq9w2VE04-9bkTSsfTNTGtQbDiS5xaa-DiypfWrz5W7vBx9NwNngh49fn0aA_JgVLUkFYmRQpckCalZRBOfcTzllCaVQyEFmS81IAzZKKRphhEgsapT5gSHcRZd3gbn_v2uivFq2TC92axj8pPRhTziGDA1XnS5SqqbQzebFStpB9wUUKMfDMU-QEVWODJl_qBivlj4_43gnejxJXqjgp3B8JnnG4cXXeWitH0_djNtqzhdHWGqzk2vg6zFZSkLtm5b5Z6ZuVv81K4SW2l6yHmxrN4Tf-sX4AXeSgug</recordid><startdate>20230702</startdate><enddate>20230702</enddate><creator>Wang, Yibo</creator><creator>Stepanova, N. A.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230702</creationdate><title>Estimating the Amount of Sparsity in Two-Point Mixture Models</title><author>Wang, Yibo ; Stepanova, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3687-3d6c8e50e19d130db130eb36112d30796a5d70196f12e9e6471283073e16a5d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimax technique</topic><topic>Mixtures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yibo</creatorcontrib><creatorcontrib>Stepanova, N. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yibo</au><au>Stepanova, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Amount of Sparsity in Two-Point Mixture Models</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-07-02</date><risdate>2023</risdate><volume>273</volume><issue>5</issue><spage>705</spage><epage>721</epage><pages>705-721</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider the problem of estimating the fraction of nonzero means in a sparse normal mixture model in the region where variable selection is possible. The focus is on the situation in which the proportion of nonzero means is very small. The proposed estimator is shown to be nearly rate optimal in the asymptotically minimax sense. Using this estimator, one can also consistently estimate the sparsity parameter in sparse normal mixtures, whose knowledge, in particular, is required to carry out the so-called almost full variable selection procedure. The advantage of using the new estimator is illustrated analytically and numerically. The obtained results can be extended to some nonnormal mixtures.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06534-7</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2023-07, Vol.273 (5), p.705-721 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2834155090 |
source | Springer Link |
subjects | Mathematics Mathematics and Statistics Minimax technique Mixtures |
title | Estimating the Amount of Sparsity in Two-Point Mixture Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Amount%20of%20Sparsity%20in%20Two-Point%20Mixture%20Models&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Wang,%20Yibo&rft.date=2023-07-02&rft.volume=273&rft.issue=5&rft.spage=705&rft.epage=721&rft.pages=705-721&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06534-7&rft_dat=%3Cgale_proqu%3EA757804059%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3687-3d6c8e50e19d130db130eb36112d30796a5d70196f12e9e6471283073e16a5d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2834155090&rft_id=info:pmid/&rft_galeid=A757804059&rfr_iscdi=true |