Loading…

Estimating the Amount of Sparsity in Two-Point Mixture Models

We consider the problem of estimating the fraction of nonzero means in a sparse normal mixture model in the region where variable selection is possible. The focus is on the situation in which the proportion of nonzero means is very small. The proposed estimator is shown to be nearly rate optimal in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-07, Vol.273 (5), p.705-721
Main Authors: Wang, Yibo, Stepanova, N. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3687-3d6c8e50e19d130db130eb36112d30796a5d70196f12e9e6471283073e16a5d13
container_end_page 721
container_issue 5
container_start_page 705
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 273
creator Wang, Yibo
Stepanova, N. A.
description We consider the problem of estimating the fraction of nonzero means in a sparse normal mixture model in the region where variable selection is possible. The focus is on the situation in which the proportion of nonzero means is very small. The proposed estimator is shown to be nearly rate optimal in the asymptotically minimax sense. Using this estimator, one can also consistently estimate the sparsity parameter in sparse normal mixtures, whose knowledge, in particular, is required to carry out the so-called almost full variable selection procedure. The advantage of using the new estimator is illustrated analytically and numerically. The obtained results can be extended to some nonnormal mixtures.
doi_str_mv 10.1007/s10958-023-06534-7
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2834155090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A757804059</galeid><sourcerecordid>A757804059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3687-3d6c8e50e19d130db130eb36112d30796a5d70196f12e9e6471283073e16a5d13</originalsourceid><addsrcrecordid>eNp9kUFLwzAYhosoOKd_wFPBk4fML03TtAcPY0wdbChunkPXfq0ZWzOTFLd_b-aEMRgSSELe50kgbxDcUuhRAPFgKWQ8JRAxAglnMRFnQYdywUgqMn7u9yAiwpiIL4MraxfgpSRlneBxaJ1a5U41deg-MeyvdNu4UFfhdJ0bq9w2VE04-9bkTSsfTNTGtQbDiS5xaa-DiypfWrz5W7vBx9NwNngh49fn0aA_JgVLUkFYmRQpckCalZRBOfcTzllCaVQyEFmS81IAzZKKRphhEgsapT5gSHcRZd3gbn_v2uivFq2TC92axj8pPRhTziGDA1XnS5SqqbQzebFStpB9wUUKMfDMU-QEVWODJl_qBivlj4_43gnejxJXqjgp3B8JnnG4cXXeWitH0_djNtqzhdHWGqzk2vg6zFZSkLtm5b5Z6ZuVv81K4SW2l6yHmxrN4Tf-sX4AXeSgug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834155090</pqid></control><display><type>article</type><title>Estimating the Amount of Sparsity in Two-Point Mixture Models</title><source>Springer Link</source><creator>Wang, Yibo ; Stepanova, N. A.</creator><creatorcontrib>Wang, Yibo ; Stepanova, N. A.</creatorcontrib><description>We consider the problem of estimating the fraction of nonzero means in a sparse normal mixture model in the region where variable selection is possible. The focus is on the situation in which the proportion of nonzero means is very small. The proposed estimator is shown to be nearly rate optimal in the asymptotically minimax sense. Using this estimator, one can also consistently estimate the sparsity parameter in sparse normal mixtures, whose knowledge, in particular, is required to carry out the so-called almost full variable selection procedure. The advantage of using the new estimator is illustrated analytically and numerically. The obtained results can be extended to some nonnormal mixtures.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06534-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Minimax technique ; Mixtures</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-07, Vol.273 (5), p.705-721</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3687-3d6c8e50e19d130db130eb36112d30796a5d70196f12e9e6471283073e16a5d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yibo</creatorcontrib><creatorcontrib>Stepanova, N. A.</creatorcontrib><title>Estimating the Amount of Sparsity in Two-Point Mixture Models</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider the problem of estimating the fraction of nonzero means in a sparse normal mixture model in the region where variable selection is possible. The focus is on the situation in which the proportion of nonzero means is very small. The proposed estimator is shown to be nearly rate optimal in the asymptotically minimax sense. Using this estimator, one can also consistently estimate the sparsity parameter in sparse normal mixtures, whose knowledge, in particular, is required to carry out the so-called almost full variable selection procedure. The advantage of using the new estimator is illustrated analytically and numerically. The obtained results can be extended to some nonnormal mixtures.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimax technique</subject><subject>Mixtures</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFLwzAYhosoOKd_wFPBk4fML03TtAcPY0wdbChunkPXfq0ZWzOTFLd_b-aEMRgSSELe50kgbxDcUuhRAPFgKWQ8JRAxAglnMRFnQYdywUgqMn7u9yAiwpiIL4MraxfgpSRlneBxaJ1a5U41deg-MeyvdNu4UFfhdJ0bq9w2VE04-9bkTSsfTNTGtQbDiS5xaa-DiypfWrz5W7vBx9NwNngh49fn0aA_JgVLUkFYmRQpckCalZRBOfcTzllCaVQyEFmS81IAzZKKRphhEgsapT5gSHcRZd3gbn_v2uivFq2TC92axj8pPRhTziGDA1XnS5SqqbQzebFStpB9wUUKMfDMU-QEVWODJl_qBivlj4_43gnejxJXqjgp3B8JnnG4cXXeWitH0_djNtqzhdHWGqzk2vg6zFZSkLtm5b5Z6ZuVv81K4SW2l6yHmxrN4Tf-sX4AXeSgug</recordid><startdate>20230702</startdate><enddate>20230702</enddate><creator>Wang, Yibo</creator><creator>Stepanova, N. A.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230702</creationdate><title>Estimating the Amount of Sparsity in Two-Point Mixture Models</title><author>Wang, Yibo ; Stepanova, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3687-3d6c8e50e19d130db130eb36112d30796a5d70196f12e9e6471283073e16a5d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimax technique</topic><topic>Mixtures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yibo</creatorcontrib><creatorcontrib>Stepanova, N. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yibo</au><au>Stepanova, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Amount of Sparsity in Two-Point Mixture Models</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-07-02</date><risdate>2023</risdate><volume>273</volume><issue>5</issue><spage>705</spage><epage>721</epage><pages>705-721</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider the problem of estimating the fraction of nonzero means in a sparse normal mixture model in the region where variable selection is possible. The focus is on the situation in which the proportion of nonzero means is very small. The proposed estimator is shown to be nearly rate optimal in the asymptotically minimax sense. Using this estimator, one can also consistently estimate the sparsity parameter in sparse normal mixtures, whose knowledge, in particular, is required to carry out the so-called almost full variable selection procedure. The advantage of using the new estimator is illustrated analytically and numerically. The obtained results can be extended to some nonnormal mixtures.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06534-7</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2023-07, Vol.273 (5), p.705-721
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2834155090
source Springer Link
subjects Mathematics
Mathematics and Statistics
Minimax technique
Mixtures
title Estimating the Amount of Sparsity in Two-Point Mixture Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Amount%20of%20Sparsity%20in%20Two-Point%20Mixture%20Models&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Wang,%20Yibo&rft.date=2023-07-02&rft.volume=273&rft.issue=5&rft.spage=705&rft.epage=721&rft.pages=705-721&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06534-7&rft_dat=%3Cgale_proqu%3EA757804059%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3687-3d6c8e50e19d130db130eb36112d30796a5d70196f12e9e6471283073e16a5d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2834155090&rft_id=info:pmid/&rft_galeid=A757804059&rfr_iscdi=true