Loading…
Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments
This paper studies a second-order non-autonomous stochastic differential equation with deviated arguments and nonlocal finite delay in a Hilbert space. The objective is to provide sufficient conditions existence and uniqueness of the mild solution and the approximate and optimal controllability of t...
Saved in:
Published in: | Afrika mathematica 2023-09, Vol.34 (3), Article 45 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-8c76b9f1f04b9f1954e2a6ababa01e3dc2c2087f6ff834b52550deee86d0501c3 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Afrika mathematica |
container_volume | 34 |
creator | Raheem, A. Khatoon, A. Afreen, A. |
description | This paper studies a second-order non-autonomous stochastic differential equation with deviated arguments and nonlocal finite delay in a Hilbert space. The objective is to provide sufficient conditions existence and uniqueness of the mild solution and the approximate and optimal controllability of the stochastic control system. We used Krasnoselskii’s fixed point theorem, the theory of compact semigroup, evolution operators, and stochastic analysis techniques to establish these results. An example is included as an application to demonstrate the main result. |
doi_str_mv | 10.1007/s13370-023-01090-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2835205611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835205611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8c76b9f1f04b9f1954e2a6ababa01e3dc2c2087f6ff834b52550deee86d0501c3</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxKb2C3gi8bw6wMJuj03jv6SJFz0TykJLs4UWWLVHv7nUmniTOQxDfu9NeAhdE7glAM1dIow1UAFlFRCYQlWfoREl5dII0Z6jEQFCq2kN_BJNUtpAObUggrMR-prtdjF8uq3KBivf4bDLZeixDj7H0Pdq6XqXDzhYrHAy5bkwsTMR--ArNeTgwzYMCacc9Fql7DTunLUmGp9dMTL7QWUXPP5weY078-7Kqg6ruBq2BUlX6MKqPpnJbx-jt4f71_lTtXh5fJ7PFpWmDeSq1Y1YTi2xUB_blNeGKqGWpYAY1mmqKbSNFda2rF5yyjl0xphWdMCBaDZGNyff8t_9YFKWmzBEX1ZK2jJOgQtCCkVPlI4hpWis3MWSRzxIAvKYtjylLUva8idtWRcRO4lSgf3KxD_rf1TfGGeF2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835205611</pqid></control><display><type>article</type><title>Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments</title><source>Springer Link</source><creator>Raheem, A. ; Khatoon, A. ; Afreen, A.</creator><creatorcontrib>Raheem, A. ; Khatoon, A. ; Afreen, A.</creatorcontrib><description>This paper studies a second-order non-autonomous stochastic differential equation with deviated arguments and nonlocal finite delay in a Hilbert space. The objective is to provide sufficient conditions existence and uniqueness of the mild solution and the approximate and optimal controllability of the stochastic control system. We used Krasnoselskii’s fixed point theorem, the theory of compact semigroup, evolution operators, and stochastic analysis techniques to establish these results. An example is included as an application to demonstrate the main result.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-023-01090-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Controllability ; Differential equations ; Fixed points (mathematics) ; Hilbert space ; History of Mathematical Sciences ; Mathematics ; Mathematics and Statistics ; Mathematics Education ; Operators (mathematics) ; Optimal control ; Stochastic processes</subject><ispartof>Afrika mathematica, 2023-09, Vol.34 (3), Article 45</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8c76b9f1f04b9f1954e2a6ababa01e3dc2c2087f6ff834b52550deee86d0501c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raheem, A.</creatorcontrib><creatorcontrib>Khatoon, A.</creatorcontrib><creatorcontrib>Afreen, A.</creatorcontrib><title>Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>This paper studies a second-order non-autonomous stochastic differential equation with deviated arguments and nonlocal finite delay in a Hilbert space. The objective is to provide sufficient conditions existence and uniqueness of the mild solution and the approximate and optimal controllability of the stochastic control system. We used Krasnoselskii’s fixed point theorem, the theory of compact semigroup, evolution operators, and stochastic analysis techniques to establish these results. An example is included as an application to demonstrate the main result.</description><subject>Applications of Mathematics</subject><subject>Controllability</subject><subject>Differential equations</subject><subject>Fixed points (mathematics)</subject><subject>Hilbert space</subject><subject>History of Mathematical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><subject>Operators (mathematics)</subject><subject>Optimal control</subject><subject>Stochastic processes</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxKb2C3gi8bw6wMJuj03jv6SJFz0TykJLs4UWWLVHv7nUmniTOQxDfu9NeAhdE7glAM1dIow1UAFlFRCYQlWfoREl5dII0Z6jEQFCq2kN_BJNUtpAObUggrMR-prtdjF8uq3KBivf4bDLZeixDj7H0Pdq6XqXDzhYrHAy5bkwsTMR--ArNeTgwzYMCacc9Fql7DTunLUmGp9dMTL7QWUXPP5weY078-7Kqg6ruBq2BUlX6MKqPpnJbx-jt4f71_lTtXh5fJ7PFpWmDeSq1Y1YTi2xUB_blNeGKqGWpYAY1mmqKbSNFda2rF5yyjl0xphWdMCBaDZGNyff8t_9YFKWmzBEX1ZK2jJOgQtCCkVPlI4hpWis3MWSRzxIAvKYtjylLUva8idtWRcRO4lSgf3KxD_rf1TfGGeF2g</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Raheem, A.</creator><creator>Khatoon, A.</creator><creator>Afreen, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments</title><author>Raheem, A. ; Khatoon, A. ; Afreen, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8c76b9f1f04b9f1954e2a6ababa01e3dc2c2087f6ff834b52550deee86d0501c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Controllability</topic><topic>Differential equations</topic><topic>Fixed points (mathematics)</topic><topic>Hilbert space</topic><topic>History of Mathematical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><topic>Operators (mathematics)</topic><topic>Optimal control</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raheem, A.</creatorcontrib><creatorcontrib>Khatoon, A.</creatorcontrib><creatorcontrib>Afreen, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raheem, A.</au><au>Khatoon, A.</au><au>Afreen, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>34</volume><issue>3</issue><artnum>45</artnum><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>This paper studies a second-order non-autonomous stochastic differential equation with deviated arguments and nonlocal finite delay in a Hilbert space. The objective is to provide sufficient conditions existence and uniqueness of the mild solution and the approximate and optimal controllability of the stochastic control system. We used Krasnoselskii’s fixed point theorem, the theory of compact semigroup, evolution operators, and stochastic analysis techniques to establish these results. An example is included as an application to demonstrate the main result.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-023-01090-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-9405 |
ispartof | Afrika mathematica, 2023-09, Vol.34 (3), Article 45 |
issn | 1012-9405 2190-7668 |
language | eng |
recordid | cdi_proquest_journals_2835205611 |
source | Springer Link |
subjects | Applications of Mathematics Controllability Differential equations Fixed points (mathematics) Hilbert space History of Mathematical Sciences Mathematics Mathematics and Statistics Mathematics Education Operators (mathematics) Optimal control Stochastic processes |
title | Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20and%20optimal%20controllability%20of%20a%20second%20order%20non-autonomous%20stochastic%20differential%20equation%20with%20deviated%20arguments&rft.jtitle=Afrika%20mathematica&rft.au=Raheem,%20A.&rft.date=2023-09-01&rft.volume=34&rft.issue=3&rft.artnum=45&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-023-01090-4&rft_dat=%3Cproquest_cross%3E2835205611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-8c76b9f1f04b9f1954e2a6ababa01e3dc2c2087f6ff834b52550deee86d0501c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2835205611&rft_id=info:pmid/&rfr_iscdi=true |