Loading…

Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments

This paper studies a second-order non-autonomous stochastic differential equation with deviated arguments and nonlocal finite delay in a Hilbert space. The objective is to provide sufficient conditions existence and uniqueness of the mild solution and the approximate and optimal controllability of t...

Full description

Saved in:
Bibliographic Details
Published in:Afrika mathematica 2023-09, Vol.34 (3), Article 45
Main Authors: Raheem, A., Khatoon, A., Afreen, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-8c76b9f1f04b9f1954e2a6ababa01e3dc2c2087f6ff834b52550deee86d0501c3
container_end_page
container_issue 3
container_start_page
container_title Afrika mathematica
container_volume 34
creator Raheem, A.
Khatoon, A.
Afreen, A.
description This paper studies a second-order non-autonomous stochastic differential equation with deviated arguments and nonlocal finite delay in a Hilbert space. The objective is to provide sufficient conditions existence and uniqueness of the mild solution and the approximate and optimal controllability of the stochastic control system. We used Krasnoselskii’s fixed point theorem, the theory of compact semigroup, evolution operators, and stochastic analysis techniques to establish these results. An example is included as an application to demonstrate the main result.
doi_str_mv 10.1007/s13370-023-01090-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2835205611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835205611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8c76b9f1f04b9f1954e2a6ababa01e3dc2c2087f6ff834b52550deee86d0501c3</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxKb2C3gi8bw6wMJuj03jv6SJFz0TykJLs4UWWLVHv7nUmniTOQxDfu9NeAhdE7glAM1dIow1UAFlFRCYQlWfoREl5dII0Z6jEQFCq2kN_BJNUtpAObUggrMR-prtdjF8uq3KBivf4bDLZeixDj7H0Pdq6XqXDzhYrHAy5bkwsTMR--ArNeTgwzYMCacc9Fql7DTunLUmGp9dMTL7QWUXPP5weY078-7Kqg6ruBq2BUlX6MKqPpnJbx-jt4f71_lTtXh5fJ7PFpWmDeSq1Y1YTi2xUB_blNeGKqGWpYAY1mmqKbSNFda2rF5yyjl0xphWdMCBaDZGNyff8t_9YFKWmzBEX1ZK2jJOgQtCCkVPlI4hpWis3MWSRzxIAvKYtjylLUva8idtWRcRO4lSgf3KxD_rf1TfGGeF2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835205611</pqid></control><display><type>article</type><title>Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments</title><source>Springer Link</source><creator>Raheem, A. ; Khatoon, A. ; Afreen, A.</creator><creatorcontrib>Raheem, A. ; Khatoon, A. ; Afreen, A.</creatorcontrib><description>This paper studies a second-order non-autonomous stochastic differential equation with deviated arguments and nonlocal finite delay in a Hilbert space. The objective is to provide sufficient conditions existence and uniqueness of the mild solution and the approximate and optimal controllability of the stochastic control system. We used Krasnoselskii’s fixed point theorem, the theory of compact semigroup, evolution operators, and stochastic analysis techniques to establish these results. An example is included as an application to demonstrate the main result.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-023-01090-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Controllability ; Differential equations ; Fixed points (mathematics) ; Hilbert space ; History of Mathematical Sciences ; Mathematics ; Mathematics and Statistics ; Mathematics Education ; Operators (mathematics) ; Optimal control ; Stochastic processes</subject><ispartof>Afrika mathematica, 2023-09, Vol.34 (3), Article 45</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8c76b9f1f04b9f1954e2a6ababa01e3dc2c2087f6ff834b52550deee86d0501c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raheem, A.</creatorcontrib><creatorcontrib>Khatoon, A.</creatorcontrib><creatorcontrib>Afreen, A.</creatorcontrib><title>Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>This paper studies a second-order non-autonomous stochastic differential equation with deviated arguments and nonlocal finite delay in a Hilbert space. The objective is to provide sufficient conditions existence and uniqueness of the mild solution and the approximate and optimal controllability of the stochastic control system. We used Krasnoselskii’s fixed point theorem, the theory of compact semigroup, evolution operators, and stochastic analysis techniques to establish these results. An example is included as an application to demonstrate the main result.</description><subject>Applications of Mathematics</subject><subject>Controllability</subject><subject>Differential equations</subject><subject>Fixed points (mathematics)</subject><subject>Hilbert space</subject><subject>History of Mathematical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><subject>Operators (mathematics)</subject><subject>Optimal control</subject><subject>Stochastic processes</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxKb2C3gi8bw6wMJuj03jv6SJFz0TykJLs4UWWLVHv7nUmniTOQxDfu9NeAhdE7glAM1dIow1UAFlFRCYQlWfoREl5dII0Z6jEQFCq2kN_BJNUtpAObUggrMR-prtdjF8uq3KBivf4bDLZeixDj7H0Pdq6XqXDzhYrHAy5bkwsTMR--ArNeTgwzYMCacc9Fql7DTunLUmGp9dMTL7QWUXPP5weY078-7Kqg6ruBq2BUlX6MKqPpnJbx-jt4f71_lTtXh5fJ7PFpWmDeSq1Y1YTi2xUB_blNeGKqGWpYAY1mmqKbSNFda2rF5yyjl0xphWdMCBaDZGNyff8t_9YFKWmzBEX1ZK2jJOgQtCCkVPlI4hpWis3MWSRzxIAvKYtjylLUva8idtWRcRO4lSgf3KxD_rf1TfGGeF2g</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Raheem, A.</creator><creator>Khatoon, A.</creator><creator>Afreen, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments</title><author>Raheem, A. ; Khatoon, A. ; Afreen, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8c76b9f1f04b9f1954e2a6ababa01e3dc2c2087f6ff834b52550deee86d0501c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Controllability</topic><topic>Differential equations</topic><topic>Fixed points (mathematics)</topic><topic>Hilbert space</topic><topic>History of Mathematical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><topic>Operators (mathematics)</topic><topic>Optimal control</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raheem, A.</creatorcontrib><creatorcontrib>Khatoon, A.</creatorcontrib><creatorcontrib>Afreen, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raheem, A.</au><au>Khatoon, A.</au><au>Afreen, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>34</volume><issue>3</issue><artnum>45</artnum><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>This paper studies a second-order non-autonomous stochastic differential equation with deviated arguments and nonlocal finite delay in a Hilbert space. The objective is to provide sufficient conditions existence and uniqueness of the mild solution and the approximate and optimal controllability of the stochastic control system. We used Krasnoselskii’s fixed point theorem, the theory of compact semigroup, evolution operators, and stochastic analysis techniques to establish these results. An example is included as an application to demonstrate the main result.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-023-01090-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 1012-9405
ispartof Afrika mathematica, 2023-09, Vol.34 (3), Article 45
issn 1012-9405
2190-7668
language eng
recordid cdi_proquest_journals_2835205611
source Springer Link
subjects Applications of Mathematics
Controllability
Differential equations
Fixed points (mathematics)
Hilbert space
History of Mathematical Sciences
Mathematics
Mathematics and Statistics
Mathematics Education
Operators (mathematics)
Optimal control
Stochastic processes
title Approximate and optimal controllability of a second order non-autonomous stochastic differential equation with deviated arguments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20and%20optimal%20controllability%20of%20a%20second%20order%20non-autonomous%20stochastic%20differential%20equation%20with%20deviated%20arguments&rft.jtitle=Afrika%20mathematica&rft.au=Raheem,%20A.&rft.date=2023-09-01&rft.volume=34&rft.issue=3&rft.artnum=45&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-023-01090-4&rft_dat=%3Cproquest_cross%3E2835205611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-8c76b9f1f04b9f1954e2a6ababa01e3dc2c2087f6ff834b52550deee86d0501c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2835205611&rft_id=info:pmid/&rfr_iscdi=true