Loading…
Toward a generative modeling analysis of CLAS exclusive \(2\pi\) photoproduction
AI-supported algorithms, particularly generative models, have been successfully used in a variety of different contexts. In this work, we demonstrate for the first time that generative adversarial networks (GANs) can be used in high-energy experimental physics to unfold detector effects from multi-p...
Saved in:
Published in: | arXiv.org 2023-07 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alghamdi, T Alanazi, Y Battaglieri, M Bibrzycki, L Golda, A V Hiller Blin, A N Isupov, E L Y Li Marsicano, L Melnitchouk, W Mokeev, V I Montana, G Pilloni, A Sato, N Szczepaniak, A P Vittorini, T |
description | AI-supported algorithms, particularly generative models, have been successfully used in a variety of different contexts. In this work, we demonstrate for the first time that generative adversarial networks (GANs) can be used in high-energy experimental physics to unfold detector effects from multi-particle final states, while preserving correlations between kinematic variables in multidimensional phase space. We perform a full closure test on two-pion photoproduction pseudodata generated with a realistic model in the kinematics of the Jefferson Lab CLAS g11 experiment. The overlap of different reaction mechanisms leading to the same final state associated with the CLAS detector's nontrivial effects represents an ideal test case for AI-supported analysis. Uncertainty quantification performed via bootstrap provides an estimate of the systematic uncertainty associated with the procedure. The test demonstrates that GANs can reproduce highly correlated multidifferential cross sections even in the presence of detector-induced distortions in the training datasets, and provides a solid basis for applying the framework to real experimental data. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2835677273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835677273</sourcerecordid><originalsourceid>FETCH-proquest_journals_28356772733</originalsourceid><addsrcrecordid>eNqNzE0LgjAcgPERBEn5HQZd6iDYf-m8hhQdOgR5FGTotMnabC-9fPsM-gCdnsuPZ4ICIGQTZVuAGQqt7eM4hpRCkpAAnQv9ZKbBDHdcccOceHB80w2XQnWYKSbfVlisW5yfdhfMX7X09mvKFZSDKNd4uGqnB6MbXzuh1QJNWyYtD3-do-VhX-THaCR3z62reu3N-LUVZCRJKQVKyH_qAzXVPrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835677273</pqid></control><display><type>article</type><title>Toward a generative modeling analysis of CLAS exclusive \(2\pi\) photoproduction</title><source>Publicly Available Content Database</source><creator>Alghamdi, T ; Alanazi, Y ; Battaglieri, M ; Bibrzycki, L ; Golda, A V ; Hiller Blin, A N ; Isupov, E L ; Y Li ; Marsicano, L ; Melnitchouk, W ; Mokeev, V I ; Montana, G ; Pilloni, A ; Sato, N ; Szczepaniak, A P ; Vittorini, T</creator><creatorcontrib>Alghamdi, T ; Alanazi, Y ; Battaglieri, M ; Bibrzycki, L ; Golda, A V ; Hiller Blin, A N ; Isupov, E L ; Y Li ; Marsicano, L ; Melnitchouk, W ; Mokeev, V I ; Montana, G ; Pilloni, A ; Sato, N ; Szczepaniak, A P ; Vittorini, T</creatorcontrib><description>AI-supported algorithms, particularly generative models, have been successfully used in a variety of different contexts. In this work, we demonstrate for the first time that generative adversarial networks (GANs) can be used in high-energy experimental physics to unfold detector effects from multi-particle final states, while preserving correlations between kinematic variables in multidimensional phase space. We perform a full closure test on two-pion photoproduction pseudodata generated with a realistic model in the kinematics of the Jefferson Lab CLAS g11 experiment. The overlap of different reaction mechanisms leading to the same final state associated with the CLAS detector's nontrivial effects represents an ideal test case for AI-supported analysis. Uncertainty quantification performed via bootstrap provides an estimate of the systematic uncertainty associated with the procedure. The test demonstrates that GANs can reproduce highly correlated multidifferential cross sections even in the presence of detector-induced distortions in the training datasets, and provides a solid basis for applying the framework to real experimental data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Generative adversarial networks ; Kinematics ; Photoproduction ; Pions ; Quarks ; Reaction mechanisms ; Sensors ; Uncertainty analysis</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2835677273?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Alghamdi, T</creatorcontrib><creatorcontrib>Alanazi, Y</creatorcontrib><creatorcontrib>Battaglieri, M</creatorcontrib><creatorcontrib>Bibrzycki, L</creatorcontrib><creatorcontrib>Golda, A V</creatorcontrib><creatorcontrib>Hiller Blin, A N</creatorcontrib><creatorcontrib>Isupov, E L</creatorcontrib><creatorcontrib>Y Li</creatorcontrib><creatorcontrib>Marsicano, L</creatorcontrib><creatorcontrib>Melnitchouk, W</creatorcontrib><creatorcontrib>Mokeev, V I</creatorcontrib><creatorcontrib>Montana, G</creatorcontrib><creatorcontrib>Pilloni, A</creatorcontrib><creatorcontrib>Sato, N</creatorcontrib><creatorcontrib>Szczepaniak, A P</creatorcontrib><creatorcontrib>Vittorini, T</creatorcontrib><title>Toward a generative modeling analysis of CLAS exclusive \(2\pi\) photoproduction</title><title>arXiv.org</title><description>AI-supported algorithms, particularly generative models, have been successfully used in a variety of different contexts. In this work, we demonstrate for the first time that generative adversarial networks (GANs) can be used in high-energy experimental physics to unfold detector effects from multi-particle final states, while preserving correlations between kinematic variables in multidimensional phase space. We perform a full closure test on two-pion photoproduction pseudodata generated with a realistic model in the kinematics of the Jefferson Lab CLAS g11 experiment. The overlap of different reaction mechanisms leading to the same final state associated with the CLAS detector's nontrivial effects represents an ideal test case for AI-supported analysis. Uncertainty quantification performed via bootstrap provides an estimate of the systematic uncertainty associated with the procedure. The test demonstrates that GANs can reproduce highly correlated multidifferential cross sections even in the presence of detector-induced distortions in the training datasets, and provides a solid basis for applying the framework to real experimental data.</description><subject>Algorithms</subject><subject>Generative adversarial networks</subject><subject>Kinematics</subject><subject>Photoproduction</subject><subject>Pions</subject><subject>Quarks</subject><subject>Reaction mechanisms</subject><subject>Sensors</subject><subject>Uncertainty analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzE0LgjAcgPERBEn5HQZd6iDYf-m8hhQdOgR5FGTotMnabC-9fPsM-gCdnsuPZ4ICIGQTZVuAGQqt7eM4hpRCkpAAnQv9ZKbBDHdcccOceHB80w2XQnWYKSbfVlisW5yfdhfMX7X09mvKFZSDKNd4uGqnB6MbXzuh1QJNWyYtD3-do-VhX-THaCR3z62reu3N-LUVZCRJKQVKyH_qAzXVPrk</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Alghamdi, T</creator><creator>Alanazi, Y</creator><creator>Battaglieri, M</creator><creator>Bibrzycki, L</creator><creator>Golda, A V</creator><creator>Hiller Blin, A N</creator><creator>Isupov, E L</creator><creator>Y Li</creator><creator>Marsicano, L</creator><creator>Melnitchouk, W</creator><creator>Mokeev, V I</creator><creator>Montana, G</creator><creator>Pilloni, A</creator><creator>Sato, N</creator><creator>Szczepaniak, A P</creator><creator>Vittorini, T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230710</creationdate><title>Toward a generative modeling analysis of CLAS exclusive \(2\pi\) photoproduction</title><author>Alghamdi, T ; Alanazi, Y ; Battaglieri, M ; Bibrzycki, L ; Golda, A V ; Hiller Blin, A N ; Isupov, E L ; Y Li ; Marsicano, L ; Melnitchouk, W ; Mokeev, V I ; Montana, G ; Pilloni, A ; Sato, N ; Szczepaniak, A P ; Vittorini, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28356772733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Generative adversarial networks</topic><topic>Kinematics</topic><topic>Photoproduction</topic><topic>Pions</topic><topic>Quarks</topic><topic>Reaction mechanisms</topic><topic>Sensors</topic><topic>Uncertainty analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Alghamdi, T</creatorcontrib><creatorcontrib>Alanazi, Y</creatorcontrib><creatorcontrib>Battaglieri, M</creatorcontrib><creatorcontrib>Bibrzycki, L</creatorcontrib><creatorcontrib>Golda, A V</creatorcontrib><creatorcontrib>Hiller Blin, A N</creatorcontrib><creatorcontrib>Isupov, E L</creatorcontrib><creatorcontrib>Y Li</creatorcontrib><creatorcontrib>Marsicano, L</creatorcontrib><creatorcontrib>Melnitchouk, W</creatorcontrib><creatorcontrib>Mokeev, V I</creatorcontrib><creatorcontrib>Montana, G</creatorcontrib><creatorcontrib>Pilloni, A</creatorcontrib><creatorcontrib>Sato, N</creatorcontrib><creatorcontrib>Szczepaniak, A P</creatorcontrib><creatorcontrib>Vittorini, T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alghamdi, T</au><au>Alanazi, Y</au><au>Battaglieri, M</au><au>Bibrzycki, L</au><au>Golda, A V</au><au>Hiller Blin, A N</au><au>Isupov, E L</au><au>Y Li</au><au>Marsicano, L</au><au>Melnitchouk, W</au><au>Mokeev, V I</au><au>Montana, G</au><au>Pilloni, A</au><au>Sato, N</au><au>Szczepaniak, A P</au><au>Vittorini, T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Toward a generative modeling analysis of CLAS exclusive \(2\pi\) photoproduction</atitle><jtitle>arXiv.org</jtitle><date>2023-07-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>AI-supported algorithms, particularly generative models, have been successfully used in a variety of different contexts. In this work, we demonstrate for the first time that generative adversarial networks (GANs) can be used in high-energy experimental physics to unfold detector effects from multi-particle final states, while preserving correlations between kinematic variables in multidimensional phase space. We perform a full closure test on two-pion photoproduction pseudodata generated with a realistic model in the kinematics of the Jefferson Lab CLAS g11 experiment. The overlap of different reaction mechanisms leading to the same final state associated with the CLAS detector's nontrivial effects represents an ideal test case for AI-supported analysis. Uncertainty quantification performed via bootstrap provides an estimate of the systematic uncertainty associated with the procedure. The test demonstrates that GANs can reproduce highly correlated multidifferential cross sections even in the presence of detector-induced distortions in the training datasets, and provides a solid basis for applying the framework to real experimental data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2835677273 |
source | Publicly Available Content Database |
subjects | Algorithms Generative adversarial networks Kinematics Photoproduction Pions Quarks Reaction mechanisms Sensors Uncertainty analysis |
title | Toward a generative modeling analysis of CLAS exclusive \(2\pi\) photoproduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Toward%20a%20generative%20modeling%20analysis%20of%20CLAS%20exclusive%20%5C(2%5Cpi%5C)%20photoproduction&rft.jtitle=arXiv.org&rft.au=Alghamdi,%20T&rft.date=2023-07-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2835677273%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28356772733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2835677273&rft_id=info:pmid/&rfr_iscdi=true |