Loading…
Hyperpixels: Flexible 4D Over-segmentation for Dense and Sparse Light Fields
4D Light Field (LF) imaging, since it conveys both spatial and angular scene information, can facilitate computer vision tasks and generate immersive experiences for end-users. A key challenge in 4D LF imaging is to flexibly and adaptively represent the included spatio-angular information to facilit...
Saved in:
Published in: | IEEE transactions on image processing 2023-01, Vol.32, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-d58dca2c8972144b7b5b2a8247d7b2f51fc806924ffef8b2ccad58140201fd473 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-d58dca2c8972144b7b5b2a8247d7b2f51fc806924ffef8b2ccad58140201fd473 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | 32 |
creator | Hamad, Maryam Conti, Caroline Nunes, Paulo Soares, Luis Ducla |
description | 4D Light Field (LF) imaging, since it conveys both spatial and angular scene information, can facilitate computer vision tasks and generate immersive experiences for end-users. A key challenge in 4D LF imaging is to flexibly and adaptively represent the included spatio-angular information to facilitate subsequent computer vision applications. Recently, image over-segmentation into homogenous regions with perceptually meaningful information has been exploited to represent 4D LFs. However, existing methods assume densely sampled LFs and do not adequately deal with sparse LFs with large occlusions. Furthermore, the spatio-angular LF cues are not fully exploited in the existing methods. In this paper, the concept of hyperpixels is defined and a flexible, automatic, and adaptive representation for both dense and sparse 4D LFs is proposed. Initially, disparity maps are estimated for all views to enhance over-segmentation accuracy and consistency. Afterwards, a modified weighted K -means clustering using robust spatio-angular features is performed in 4D Euclidean space. Experimental results on several dense and sparse 4D LF datasets show competitive and outperforming performance in terms of over-segmentation accuracy, shape regularity and view consistency against state-of-the-art methods. |
doi_str_mv | 10.1109/TIP.2023.3290523 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836060755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10173755</ieee_id><sourcerecordid>2836060755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-d58dca2c8972144b7b5b2a8247d7b2f51fc806924ffef8b2ccad58140201fd473</originalsourceid><addsrcrecordid>eNpdkEFLw0AQRhdRbK3ePYgEvHhJnd3sZhNv0lpbKFSwnsMmma0paRJ3E2n_vVtaRTzNHN73zfAIuaYwpBTih-XsdciABcOAxSBYcEL6NObUB-Ds1O0gpC8pj3vkwto1AOWChuekF0gOIpJxn8ynuwZNU2yxtI_epMRtkZbo8bG3-ELjW1xtsGpVW9SVp2vjjbGy6Kkq994aZdw6L1YfrTcpsMztJTnTqrR4dZwD8j55Xo6m_nzxMhs9zf2M07D1cxHlmWJZFEtGOU9lKlKmIsZlLlOmBdVZBGHMuNaoo5RlmXIRyoEB1TmXwYDcH3obU392aNtkU9gMy1JVWHc2YVHAASAU3KF3_9B13ZnKfbenQghBCuEoOFCZqa01qJPGFBtldgmFZG86caaTvenkaNpFbo_FXbrB_Dfwo9YBNwegQMQ_fVQG-5Pfw-uAJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836060755</pqid></control><display><type>article</type><title>Hyperpixels: Flexible 4D Over-segmentation for Dense and Sparse Light Fields</title><source>IEEE Xplore (Online service)</source><creator>Hamad, Maryam ; Conti, Caroline ; Nunes, Paulo ; Soares, Luis Ducla</creator><creatorcontrib>Hamad, Maryam ; Conti, Caroline ; Nunes, Paulo ; Soares, Luis Ducla</creatorcontrib><description>4D Light Field (LF) imaging, since it conveys both spatial and angular scene information, can facilitate computer vision tasks and generate immersive experiences for end-users. A key challenge in 4D LF imaging is to flexibly and adaptively represent the included spatio-angular information to facilitate subsequent computer vision applications. Recently, image over-segmentation into homogenous regions with perceptually meaningful information has been exploited to represent 4D LFs. However, existing methods assume densely sampled LFs and do not adequately deal with sparse LFs with large occlusions. Furthermore, the spatio-angular LF cues are not fully exploited in the existing methods. In this paper, the concept of hyperpixels is defined and a flexible, automatic, and adaptive representation for both dense and sparse 4D LFs is proposed. Initially, disparity maps are estimated for all views to enhance over-segmentation accuracy and consistency. Afterwards, a modified weighted K -means clustering using robust spatio-angular features is performed in 4D Euclidean space. Experimental results on several dense and sparse 4D LF datasets show competitive and outperforming performance in terms of over-segmentation accuracy, shape regularity and view consistency against state-of-the-art methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3290523</identifier><identifier>PMID: 37405879</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>4D <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means clustering ; Clustering ; Computer vision ; Consistency ; Euclidean geometry ; Euclidean space ; Image color analysis ; Image segmentation ; Light field over-segmentation ; Light field representation ; Light fields ; Measurement ; superpixel ; supervoxel ; Three-dimensional displays ; Videos ; Visualization</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.32, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-d58dca2c8972144b7b5b2a8247d7b2f51fc806924ffef8b2ccad58140201fd473</citedby><cites>FETCH-LOGICAL-c416t-d58dca2c8972144b7b5b2a8247d7b2f51fc806924ffef8b2ccad58140201fd473</cites><orcidid>0000-0003-3982-5723 ; 0000-0002-9197-2627 ; 0000-0001-9738-639X ; 0000-0003-2952-9680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10173755$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37405879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamad, Maryam</creatorcontrib><creatorcontrib>Conti, Caroline</creatorcontrib><creatorcontrib>Nunes, Paulo</creatorcontrib><creatorcontrib>Soares, Luis Ducla</creatorcontrib><title>Hyperpixels: Flexible 4D Over-segmentation for Dense and Sparse Light Fields</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>4D Light Field (LF) imaging, since it conveys both spatial and angular scene information, can facilitate computer vision tasks and generate immersive experiences for end-users. A key challenge in 4D LF imaging is to flexibly and adaptively represent the included spatio-angular information to facilitate subsequent computer vision applications. Recently, image over-segmentation into homogenous regions with perceptually meaningful information has been exploited to represent 4D LFs. However, existing methods assume densely sampled LFs and do not adequately deal with sparse LFs with large occlusions. Furthermore, the spatio-angular LF cues are not fully exploited in the existing methods. In this paper, the concept of hyperpixels is defined and a flexible, automatic, and adaptive representation for both dense and sparse 4D LFs is proposed. Initially, disparity maps are estimated for all views to enhance over-segmentation accuracy and consistency. Afterwards, a modified weighted K -means clustering using robust spatio-angular features is performed in 4D Euclidean space. Experimental results on several dense and sparse 4D LF datasets show competitive and outperforming performance in terms of over-segmentation accuracy, shape regularity and view consistency against state-of-the-art methods.</description><subject>4D <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means clustering</subject><subject>Clustering</subject><subject>Computer vision</subject><subject>Consistency</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Light field over-segmentation</subject><subject>Light field representation</subject><subject>Light fields</subject><subject>Measurement</subject><subject>superpixel</subject><subject>supervoxel</subject><subject>Three-dimensional displays</subject><subject>Videos</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkEFLw0AQRhdRbK3ePYgEvHhJnd3sZhNv0lpbKFSwnsMmma0paRJ3E2n_vVtaRTzNHN73zfAIuaYwpBTih-XsdciABcOAxSBYcEL6NObUB-Ds1O0gpC8pj3vkwto1AOWChuekF0gOIpJxn8ynuwZNU2yxtI_epMRtkZbo8bG3-ELjW1xtsGpVW9SVp2vjjbGy6Kkq994aZdw6L1YfrTcpsMztJTnTqrR4dZwD8j55Xo6m_nzxMhs9zf2M07D1cxHlmWJZFEtGOU9lKlKmIsZlLlOmBdVZBGHMuNaoo5RlmXIRyoEB1TmXwYDcH3obU392aNtkU9gMy1JVWHc2YVHAASAU3KF3_9B13ZnKfbenQghBCuEoOFCZqa01qJPGFBtldgmFZG86caaTvenkaNpFbo_FXbrB_Dfwo9YBNwegQMQ_fVQG-5Pfw-uAJA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Hamad, Maryam</creator><creator>Conti, Caroline</creator><creator>Nunes, Paulo</creator><creator>Soares, Luis Ducla</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3982-5723</orcidid><orcidid>https://orcid.org/0000-0002-9197-2627</orcidid><orcidid>https://orcid.org/0000-0001-9738-639X</orcidid><orcidid>https://orcid.org/0000-0003-2952-9680</orcidid></search><sort><creationdate>20230101</creationdate><title>Hyperpixels: Flexible 4D Over-segmentation for Dense and Sparse Light Fields</title><author>Hamad, Maryam ; Conti, Caroline ; Nunes, Paulo ; Soares, Luis Ducla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-d58dca2c8972144b7b5b2a8247d7b2f51fc806924ffef8b2ccad58140201fd473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>4D <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means clustering</topic><topic>Clustering</topic><topic>Computer vision</topic><topic>Consistency</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Light field over-segmentation</topic><topic>Light field representation</topic><topic>Light fields</topic><topic>Measurement</topic><topic>superpixel</topic><topic>supervoxel</topic><topic>Three-dimensional displays</topic><topic>Videos</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamad, Maryam</creatorcontrib><creatorcontrib>Conti, Caroline</creatorcontrib><creatorcontrib>Nunes, Paulo</creatorcontrib><creatorcontrib>Soares, Luis Ducla</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamad, Maryam</au><au>Conti, Caroline</au><au>Nunes, Paulo</au><au>Soares, Luis Ducla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperpixels: Flexible 4D Over-segmentation for Dense and Sparse Light Fields</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>32</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>4D Light Field (LF) imaging, since it conveys both spatial and angular scene information, can facilitate computer vision tasks and generate immersive experiences for end-users. A key challenge in 4D LF imaging is to flexibly and adaptively represent the included spatio-angular information to facilitate subsequent computer vision applications. Recently, image over-segmentation into homogenous regions with perceptually meaningful information has been exploited to represent 4D LFs. However, existing methods assume densely sampled LFs and do not adequately deal with sparse LFs with large occlusions. Furthermore, the spatio-angular LF cues are not fully exploited in the existing methods. In this paper, the concept of hyperpixels is defined and a flexible, automatic, and adaptive representation for both dense and sparse 4D LFs is proposed. Initially, disparity maps are estimated for all views to enhance over-segmentation accuracy and consistency. Afterwards, a modified weighted K -means clustering using robust spatio-angular features is performed in 4D Euclidean space. Experimental results on several dense and sparse 4D LF datasets show competitive and outperforming performance in terms of over-segmentation accuracy, shape regularity and view consistency against state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37405879</pmid><doi>10.1109/TIP.2023.3290523</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3982-5723</orcidid><orcidid>https://orcid.org/0000-0002-9197-2627</orcidid><orcidid>https://orcid.org/0000-0001-9738-639X</orcidid><orcidid>https://orcid.org/0000-0003-2952-9680</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023-01, Vol.32, p.1-1 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2836060755 |
source | IEEE Xplore (Online service) |
subjects | 4D <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means clustering Clustering Computer vision Consistency Euclidean geometry Euclidean space Image color analysis Image segmentation Light field over-segmentation Light field representation Light fields Measurement superpixel supervoxel Three-dimensional displays Videos Visualization |
title | Hyperpixels: Flexible 4D Over-segmentation for Dense and Sparse Light Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A53%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperpixels:%20Flexible%204D%20Over-segmentation%20for%20Dense%20and%20Sparse%20Light%20Fields&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Hamad,%20Maryam&rft.date=2023-01-01&rft.volume=32&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3290523&rft_dat=%3Cproquest_cross%3E2836060755%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-d58dca2c8972144b7b5b2a8247d7b2f51fc806924ffef8b2ccad58140201fd473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2836060755&rft_id=info:pmid/37405879&rft_ieee_id=10173755&rfr_iscdi=true |