Loading…

Canonical Diffeomorphisms of Manifolds Near Spheres

For a given Riemannian manifold ( M n , g ) which is near standard sphere ( S n , g round ) in the Gromov–Hausdorff topology and satisfies R c ≥ n - 1 , it is known by Cheeger–Colding theory that M is diffeomorphic to S n . A diffeomorphism φ : M → S n was constructed in Cheeger and Colding (J Diffe...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geometric analysis 2023-09, Vol.33 (9), Article 304
Main Authors: Wang, Bing, Zhao, Xinrui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163
cites cdi_FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163
container_end_page
container_issue 9
container_start_page
container_title The Journal of geometric analysis
container_volume 33
creator Wang, Bing
Zhao, Xinrui
description For a given Riemannian manifold ( M n , g ) which is near standard sphere ( S n , g round ) in the Gromov–Hausdorff topology and satisfies R c ≥ n - 1 , it is known by Cheeger–Colding theory that M is diffeomorphic to S n . A diffeomorphism φ : M → S n was constructed in Cheeger and Colding (J Differ Geom 46(3):406–480, 1997) using Reifenberg method. In this note, we show that a desired diffeomorphism can be constructed canonically. Let { f i } i = 1 n + 1 be the first ( n + 1 ) -eigenfunctions of ( M ,  g ) and f = ( f 1 , f 2 , … , f n + 1 ) . Then the map f ~ = f | f | : M → S n provides a diffeomorphism, and f ~ satisfies a uniform bi-Hölder estimate. We further show that this bi-Hölder estimate is sharp and cannot be improved to a bi-Lipschitz estimate. Our study could be considered as a continuation of Colding’s works (Invent Math 124(1–3):175–191, 1996, Invent Math 124(1–3):193–214, 1996) and Petersen’s work (Invent Math 138(1):1–21, 1999).
doi_str_mv 10.1007/s12220-023-01375-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836406371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836406371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJpknbo6yfsOpBBW8hbSdul92mJruw_nujFbx5mmF43nfgYexUwLkAKC6ikFICB4kcBBaK7_bYRChVcQD5tp92UMB1JfUhO4pxCZBrzIsJw5ntfd81dpVddc6RX_swLLq4jpl32YPtO-dXbcweyYbseVhQoHjMDpxdRTr5nVP2enP9Mrvj86fb-9nlnDeoyg0vGy0LqhVSTqKy2OQO21q7WpQadStAEIIsWxSarJJNurmapG5tUbel0DhlZ2PvEPzHluLGLP029OmlkSXqHDQWIlFypJrgYwzkzBC6tQ2fRoD5lmNGOSbJMT9yzC6FcAzFBPfvFP6q_0l9AfC0Zxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836406371</pqid></control><display><type>article</type><title>Canonical Diffeomorphisms of Manifolds Near Spheres</title><source>Springer Nature</source><creator>Wang, Bing ; Zhao, Xinrui</creator><creatorcontrib>Wang, Bing ; Zhao, Xinrui</creatorcontrib><description>For a given Riemannian manifold ( M n , g ) which is near standard sphere ( S n , g round ) in the Gromov–Hausdorff topology and satisfies R c ≥ n - 1 , it is known by Cheeger–Colding theory that M is diffeomorphic to S n . A diffeomorphism φ : M → S n was constructed in Cheeger and Colding (J Differ Geom 46(3):406–480, 1997) using Reifenberg method. In this note, we show that a desired diffeomorphism can be constructed canonically. Let { f i } i = 1 n + 1 be the first ( n + 1 ) -eigenfunctions of ( M ,  g ) and f = ( f 1 , f 2 , … , f n + 1 ) . Then the map f ~ = f | f | : M → S n provides a diffeomorphism, and f ~ satisfies a uniform bi-Hölder estimate. We further show that this bi-Hölder estimate is sharp and cannot be improved to a bi-Lipschitz estimate. Our study could be considered as a continuation of Colding’s works (Invent Math 124(1–3):175–191, 1996, Invent Math 124(1–3):193–214, 1996) and Petersen’s work (Invent Math 138(1):1–21, 1999).</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-023-01375-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Eigenvectors ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Isomorphism ; Mathematics ; Mathematics and Statistics ; Riemann manifold ; Topology</subject><ispartof>The Journal of geometric analysis, 2023-09, Vol.33 (9), Article 304</ispartof><rights>Mathematica Josephina, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163</citedby><cites>FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163</cites><orcidid>0000-0002-8270-6589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Zhao, Xinrui</creatorcontrib><title>Canonical Diffeomorphisms of Manifolds Near Spheres</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>For a given Riemannian manifold ( M n , g ) which is near standard sphere ( S n , g round ) in the Gromov–Hausdorff topology and satisfies R c ≥ n - 1 , it is known by Cheeger–Colding theory that M is diffeomorphic to S n . A diffeomorphism φ : M → S n was constructed in Cheeger and Colding (J Differ Geom 46(3):406–480, 1997) using Reifenberg method. In this note, we show that a desired diffeomorphism can be constructed canonically. Let { f i } i = 1 n + 1 be the first ( n + 1 ) -eigenfunctions of ( M ,  g ) and f = ( f 1 , f 2 , … , f n + 1 ) . Then the map f ~ = f | f | : M → S n provides a diffeomorphism, and f ~ satisfies a uniform bi-Hölder estimate. We further show that this bi-Hölder estimate is sharp and cannot be improved to a bi-Lipschitz estimate. Our study could be considered as a continuation of Colding’s works (Invent Math 124(1–3):175–191, 1996, Invent Math 124(1–3):193–214, 1996) and Petersen’s work (Invent Math 138(1):1–21, 1999).</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvectors</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><subject>Topology</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJpknbo6yfsOpBBW8hbSdul92mJruw_nujFbx5mmF43nfgYexUwLkAKC6ikFICB4kcBBaK7_bYRChVcQD5tp92UMB1JfUhO4pxCZBrzIsJw5ntfd81dpVddc6RX_swLLq4jpl32YPtO-dXbcweyYbseVhQoHjMDpxdRTr5nVP2enP9Mrvj86fb-9nlnDeoyg0vGy0LqhVSTqKy2OQO21q7WpQadStAEIIsWxSarJJNurmapG5tUbel0DhlZ2PvEPzHluLGLP029OmlkSXqHDQWIlFypJrgYwzkzBC6tQ2fRoD5lmNGOSbJMT9yzC6FcAzFBPfvFP6q_0l9AfC0Zxc</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Wang, Bing</creator><creator>Zhao, Xinrui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8270-6589</orcidid></search><sort><creationdate>20230901</creationdate><title>Canonical Diffeomorphisms of Manifolds Near Spheres</title><author>Wang, Bing ; Zhao, Xinrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvectors</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Zhao, Xinrui</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bing</au><au>Zhao, Xinrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical Diffeomorphisms of Manifolds Near Spheres</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>33</volume><issue>9</issue><artnum>304</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>For a given Riemannian manifold ( M n , g ) which is near standard sphere ( S n , g round ) in the Gromov–Hausdorff topology and satisfies R c ≥ n - 1 , it is known by Cheeger–Colding theory that M is diffeomorphic to S n . A diffeomorphism φ : M → S n was constructed in Cheeger and Colding (J Differ Geom 46(3):406–480, 1997) using Reifenberg method. In this note, we show that a desired diffeomorphism can be constructed canonically. Let { f i } i = 1 n + 1 be the first ( n + 1 ) -eigenfunctions of ( M ,  g ) and f = ( f 1 , f 2 , … , f n + 1 ) . Then the map f ~ = f | f | : M → S n provides a diffeomorphism, and f ~ satisfies a uniform bi-Hölder estimate. We further show that this bi-Hölder estimate is sharp and cannot be improved to a bi-Lipschitz estimate. Our study could be considered as a continuation of Colding’s works (Invent Math 124(1–3):175–191, 1996, Invent Math 124(1–3):193–214, 1996) and Petersen’s work (Invent Math 138(1):1–21, 1999).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-023-01375-x</doi><orcidid>https://orcid.org/0000-0002-8270-6589</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2023-09, Vol.33 (9), Article 304
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2836406371
source Springer Nature
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Eigenvectors
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Isomorphism
Mathematics
Mathematics and Statistics
Riemann manifold
Topology
title Canonical Diffeomorphisms of Manifolds Near Spheres
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20Diffeomorphisms%20of%20Manifolds%20Near%20Spheres&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Wang,%20Bing&rft.date=2023-09-01&rft.volume=33&rft.issue=9&rft.artnum=304&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-023-01375-x&rft_dat=%3Cproquest_cross%3E2836406371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2836406371&rft_id=info:pmid/&rfr_iscdi=true