Loading…
Canonical Diffeomorphisms of Manifolds Near Spheres
For a given Riemannian manifold ( M n , g ) which is near standard sphere ( S n , g round ) in the Gromov–Hausdorff topology and satisfies R c ≥ n - 1 , it is known by Cheeger–Colding theory that M is diffeomorphic to S n . A diffeomorphism φ : M → S n was constructed in Cheeger and Colding (J Diffe...
Saved in:
Published in: | The Journal of geometric analysis 2023-09, Vol.33 (9), Article 304 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | The Journal of geometric analysis |
container_volume | 33 |
creator | Wang, Bing Zhao, Xinrui |
description | For a given Riemannian manifold
(
M
n
,
g
)
which is near standard sphere
(
S
n
,
g
round
)
in the Gromov–Hausdorff topology and satisfies
R
c
≥
n
-
1
, it is known by Cheeger–Colding theory that
M
is diffeomorphic to
S
n
. A diffeomorphism
φ
:
M
→
S
n
was constructed in Cheeger and Colding (J Differ Geom 46(3):406–480, 1997) using Reifenberg method. In this note, we show that a desired diffeomorphism can be constructed canonically. Let
{
f
i
}
i
=
1
n
+
1
be the first
(
n
+
1
)
-eigenfunctions of (
M
,
g
) and
f
=
(
f
1
,
f
2
,
…
,
f
n
+
1
)
. Then the map
f
~
=
f
|
f
|
:
M
→
S
n
provides a diffeomorphism, and
f
~
satisfies a uniform bi-Hölder estimate. We further show that this bi-Hölder estimate is sharp and cannot be improved to a bi-Lipschitz estimate. Our study could be considered as a continuation of Colding’s works (Invent Math 124(1–3):175–191, 1996, Invent Math 124(1–3):193–214, 1996) and Petersen’s work (Invent Math 138(1):1–21, 1999). |
doi_str_mv | 10.1007/s12220-023-01375-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836406371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836406371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJpknbo6yfsOpBBW8hbSdul92mJruw_nujFbx5mmF43nfgYexUwLkAKC6ikFICB4kcBBaK7_bYRChVcQD5tp92UMB1JfUhO4pxCZBrzIsJw5ntfd81dpVddc6RX_swLLq4jpl32YPtO-dXbcweyYbseVhQoHjMDpxdRTr5nVP2enP9Mrvj86fb-9nlnDeoyg0vGy0LqhVSTqKy2OQO21q7WpQadStAEIIsWxSarJJNurmapG5tUbel0DhlZ2PvEPzHluLGLP029OmlkSXqHDQWIlFypJrgYwzkzBC6tQ2fRoD5lmNGOSbJMT9yzC6FcAzFBPfvFP6q_0l9AfC0Zxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836406371</pqid></control><display><type>article</type><title>Canonical Diffeomorphisms of Manifolds Near Spheres</title><source>Springer Nature</source><creator>Wang, Bing ; Zhao, Xinrui</creator><creatorcontrib>Wang, Bing ; Zhao, Xinrui</creatorcontrib><description>For a given Riemannian manifold
(
M
n
,
g
)
which is near standard sphere
(
S
n
,
g
round
)
in the Gromov–Hausdorff topology and satisfies
R
c
≥
n
-
1
, it is known by Cheeger–Colding theory that
M
is diffeomorphic to
S
n
. A diffeomorphism
φ
:
M
→
S
n
was constructed in Cheeger and Colding (J Differ Geom 46(3):406–480, 1997) using Reifenberg method. In this note, we show that a desired diffeomorphism can be constructed canonically. Let
{
f
i
}
i
=
1
n
+
1
be the first
(
n
+
1
)
-eigenfunctions of (
M
,
g
) and
f
=
(
f
1
,
f
2
,
…
,
f
n
+
1
)
. Then the map
f
~
=
f
|
f
|
:
M
→
S
n
provides a diffeomorphism, and
f
~
satisfies a uniform bi-Hölder estimate. We further show that this bi-Hölder estimate is sharp and cannot be improved to a bi-Lipschitz estimate. Our study could be considered as a continuation of Colding’s works (Invent Math 124(1–3):175–191, 1996, Invent Math 124(1–3):193–214, 1996) and Petersen’s work (Invent Math 138(1):1–21, 1999).</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-023-01375-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Eigenvectors ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Isomorphism ; Mathematics ; Mathematics and Statistics ; Riemann manifold ; Topology</subject><ispartof>The Journal of geometric analysis, 2023-09, Vol.33 (9), Article 304</ispartof><rights>Mathematica Josephina, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163</citedby><cites>FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163</cites><orcidid>0000-0002-8270-6589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Zhao, Xinrui</creatorcontrib><title>Canonical Diffeomorphisms of Manifolds Near Spheres</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>For a given Riemannian manifold
(
M
n
,
g
)
which is near standard sphere
(
S
n
,
g
round
)
in the Gromov–Hausdorff topology and satisfies
R
c
≥
n
-
1
, it is known by Cheeger–Colding theory that
M
is diffeomorphic to
S
n
. A diffeomorphism
φ
:
M
→
S
n
was constructed in Cheeger and Colding (J Differ Geom 46(3):406–480, 1997) using Reifenberg method. In this note, we show that a desired diffeomorphism can be constructed canonically. Let
{
f
i
}
i
=
1
n
+
1
be the first
(
n
+
1
)
-eigenfunctions of (
M
,
g
) and
f
=
(
f
1
,
f
2
,
…
,
f
n
+
1
)
. Then the map
f
~
=
f
|
f
|
:
M
→
S
n
provides a diffeomorphism, and
f
~
satisfies a uniform bi-Hölder estimate. We further show that this bi-Hölder estimate is sharp and cannot be improved to a bi-Lipschitz estimate. Our study could be considered as a continuation of Colding’s works (Invent Math 124(1–3):175–191, 1996, Invent Math 124(1–3):193–214, 1996) and Petersen’s work (Invent Math 138(1):1–21, 1999).</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvectors</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><subject>Topology</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJpknbo6yfsOpBBW8hbSdul92mJruw_nujFbx5mmF43nfgYexUwLkAKC6ikFICB4kcBBaK7_bYRChVcQD5tp92UMB1JfUhO4pxCZBrzIsJw5ntfd81dpVddc6RX_swLLq4jpl32YPtO-dXbcweyYbseVhQoHjMDpxdRTr5nVP2enP9Mrvj86fb-9nlnDeoyg0vGy0LqhVSTqKy2OQO21q7WpQadStAEIIsWxSarJJNurmapG5tUbel0DhlZ2PvEPzHluLGLP029OmlkSXqHDQWIlFypJrgYwzkzBC6tQ2fRoD5lmNGOSbJMT9yzC6FcAzFBPfvFP6q_0l9AfC0Zxc</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Wang, Bing</creator><creator>Zhao, Xinrui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8270-6589</orcidid></search><sort><creationdate>20230901</creationdate><title>Canonical Diffeomorphisms of Manifolds Near Spheres</title><author>Wang, Bing ; Zhao, Xinrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvectors</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Zhao, Xinrui</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bing</au><au>Zhao, Xinrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical Diffeomorphisms of Manifolds Near Spheres</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>33</volume><issue>9</issue><artnum>304</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>For a given Riemannian manifold
(
M
n
,
g
)
which is near standard sphere
(
S
n
,
g
round
)
in the Gromov–Hausdorff topology and satisfies
R
c
≥
n
-
1
, it is known by Cheeger–Colding theory that
M
is diffeomorphic to
S
n
. A diffeomorphism
φ
:
M
→
S
n
was constructed in Cheeger and Colding (J Differ Geom 46(3):406–480, 1997) using Reifenberg method. In this note, we show that a desired diffeomorphism can be constructed canonically. Let
{
f
i
}
i
=
1
n
+
1
be the first
(
n
+
1
)
-eigenfunctions of (
M
,
g
) and
f
=
(
f
1
,
f
2
,
…
,
f
n
+
1
)
. Then the map
f
~
=
f
|
f
|
:
M
→
S
n
provides a diffeomorphism, and
f
~
satisfies a uniform bi-Hölder estimate. We further show that this bi-Hölder estimate is sharp and cannot be improved to a bi-Lipschitz estimate. Our study could be considered as a continuation of Colding’s works (Invent Math 124(1–3):175–191, 1996, Invent Math 124(1–3):193–214, 1996) and Petersen’s work (Invent Math 138(1):1–21, 1999).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-023-01375-x</doi><orcidid>https://orcid.org/0000-0002-8270-6589</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of geometric analysis, 2023-09, Vol.33 (9), Article 304 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2836406371 |
source | Springer Nature |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Differential Geometry Dynamical Systems and Ergodic Theory Eigenvectors Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Isomorphism Mathematics Mathematics and Statistics Riemann manifold Topology |
title | Canonical Diffeomorphisms of Manifolds Near Spheres |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20Diffeomorphisms%20of%20Manifolds%20Near%20Spheres&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Wang,%20Bing&rft.date=2023-09-01&rft.volume=33&rft.issue=9&rft.artnum=304&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-023-01375-x&rft_dat=%3Cproquest_cross%3E2836406371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-8c627eb53e4e19a3c4f3db6fb18636d101e3028d316ea52c36dfbe26da7bd8163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2836406371&rft_id=info:pmid/&rfr_iscdi=true |