Loading…
Nanocrystalline (HoxY1−x)2Ti2O7 luminophores for short- and mid-infrared lasers
We present a versatile sol–gel approach for low-phonon nanocrystalline (Ho x Y 1−x ) 2 Ti 2 O 7 , x = exhibiting luminescence within the spectral range 2000–3000 nm. The nanocrystalline structure of (Ho x Y 1−x ) 2 Ti 2 O 7 was studied and the effect of the composition and phonon energy on the lum...
Saved in:
Published in: | Journal of sol-gel science and technology 2023-08, Vol.107 (2), p.320-328 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-71f902311b2fff9e6da1f2c5189c35ac83feef94ddcb014c7ae7230fbd4dfa5b3 |
container_end_page | 328 |
container_issue | 2 |
container_start_page | 320 |
container_title | Journal of sol-gel science and technology |
container_volume | 107 |
creator | Mrázek, Jan Kamrádková, Soňa Buršík, Jiří Skála, Roman Bartoň, Ivo Vařák, Petr Baravets, Yauhen Podrazký, Ondřej |
description | We present a versatile sol–gel approach for low-phonon nanocrystalline (Ho
x
Y
1−x
)
2
Ti
2
O
7
,
x
= exhibiting luminescence within the spectral range 2000–3000 nm. The nanocrystalline structure of (Ho
x
Y
1−x
)
2
Ti
2
O
7
was studied and the effect of the composition and phonon energy on the luminescence properties was evaluated. Regular distribution of Ho
3+
ions inside the pyrochlore crystal lattice was proved leading to a regular increase of the unit cell parameter. The luminescence intensity recorded at 2025 nm reached a maximum for the composition (Ho
0.03
Y
0.96
)
2
Ti
2
O
7
. The radiative lifetime recorded at 2025 nm regularly decreased with increasing content of Ho
3+
ions inside the pyrochlore lattice from 6.32 to 0.22 ms. The phonon energy of the samples was smaller than 700 cm
−1
allowing the luminescence spectral range to be extended up to 2900 nm. Further tailoring of the chemical composition can improve the emission at 2860 nm providing a promising high thermally and chemically stable alternative to conventional fluoride or chalcogenide glasses.
Graphical Abstract
Highlights
We present a versatile sol–gel approach to preparing (Ho
x
Y
1−x
)
2
Ti
2
O
7
x
= .
The content of Ho
3+
ions in the lattice has a major impact on the luminescence properties.
The optimal content of Ho
3+
ions to maximize the luminescence intensity is identified.
Low phonon energy of (Ho
x
Y
1−x
)
2
Ti
2
O
7
allows the radiative transition at 2860 nm to be activated. |
doi_str_mv | 10.1007/s10971-023-06113-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836665586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836665586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-71f902311b2fff9e6da1f2c5189c35ac83feef94ddcb014c7ae7230fbd4dfa5b3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyRWGAw3GsncTKiCihSRYVUBibL8Q-kSuNip1L6Bsw8Ik9CoEhsTPcM5zv36BByinCJAOIqIpQCKTBOIUfktN8jI8wEp2mR5vtkBCUrKAgQh-QoxiUAZCmKEXl8UK3XYRs71TR1a5Pzqe-f8fP9o79gi5rNRdJsVnXr168-2Jg4H5I4yI4mqjXJqja0bl1QwZqkUdGGeEwOnGqiPfm9Y_J0e7OYTOlsfnc_uZ5RzQR0VKArh7qIFXPOlTY3Ch3TGRal5pnSBXfWujI1RleAqRbKCsbBVSY1TmUVH5OzXe46-LeNjZ1c-k1oh5eSFTzP8ywr8sHFdi4dfIzBOrkO9UqFrUSQ39PJ3XRy6CJ_ppP9APEdFAdz-2LDX_Q_1BcAr3Nx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836665586</pqid></control><display><type>article</type><title>Nanocrystalline (HoxY1−x)2Ti2O7 luminophores for short- and mid-infrared lasers</title><source>Springer Nature</source><creator>Mrázek, Jan ; Kamrádková, Soňa ; Buršík, Jiří ; Skála, Roman ; Bartoň, Ivo ; Vařák, Petr ; Baravets, Yauhen ; Podrazký, Ondřej</creator><creatorcontrib>Mrázek, Jan ; Kamrádková, Soňa ; Buršík, Jiří ; Skála, Roman ; Bartoň, Ivo ; Vařák, Petr ; Baravets, Yauhen ; Podrazký, Ondřej</creatorcontrib><description>We present a versatile sol–gel approach for low-phonon nanocrystalline (Ho
x
Y
1−x
)
2
Ti
2
O
7
,
x
= <0.01, 0.40> exhibiting luminescence within the spectral range 2000–3000 nm. The nanocrystalline structure of (Ho
x
Y
1−x
)
2
Ti
2
O
7
was studied and the effect of the composition and phonon energy on the luminescence properties was evaluated. Regular distribution of Ho
3+
ions inside the pyrochlore crystal lattice was proved leading to a regular increase of the unit cell parameter. The luminescence intensity recorded at 2025 nm reached a maximum for the composition (Ho
0.03
Y
0.96
)
2
Ti
2
O
7
. The radiative lifetime recorded at 2025 nm regularly decreased with increasing content of Ho
3+
ions inside the pyrochlore lattice from 6.32 to 0.22 ms. The phonon energy of the samples was smaller than 700 cm
−1
allowing the luminescence spectral range to be extended up to 2900 nm. Further tailoring of the chemical composition can improve the emission at 2860 nm providing a promising high thermally and chemically stable alternative to conventional fluoride or chalcogenide glasses.
Graphical Abstract
Highlights
We present a versatile sol–gel approach to preparing (Ho
x
Y
1−x
)
2
Ti
2
O
7
x
= <0.01, 0.40>.
The content of Ho
3+
ions in the lattice has a major impact on the luminescence properties.
The optimal content of Ho
3+
ions to maximize the luminescence intensity is identified.
Low phonon energy of (Ho
x
Y
1−x
)
2
Ti
2
O
7
allows the radiative transition at 2860 nm to be activated.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-023-06113-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ceramics ; Chemical composition ; Chemistry and Materials Science ; Composites ; Crystal lattices ; Energy ; Fluorides ; Glass ; Holmium ; Infrared lasers ; Inorganic Chemistry ; Lasers ; Luminescence ; Materials Science ; Nanocrystals ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Optical properties ; Original Paper: Sol–gel and hybrid materials for optical ; Phonons ; photonic and optoelectronic applications ; Pyrochlores ; Radiative lifetime ; Science ; Sol-gel processes ; Spectrum analysis ; Unit cell</subject><ispartof>Journal of sol-gel science and technology, 2023-08, Vol.107 (2), p.320-328</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-71f902311b2fff9e6da1f2c5189c35ac83feef94ddcb014c7ae7230fbd4dfa5b3</cites><orcidid>0000-0002-7986-0841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Mrázek, Jan</creatorcontrib><creatorcontrib>Kamrádková, Soňa</creatorcontrib><creatorcontrib>Buršík, Jiří</creatorcontrib><creatorcontrib>Skála, Roman</creatorcontrib><creatorcontrib>Bartoň, Ivo</creatorcontrib><creatorcontrib>Vařák, Petr</creatorcontrib><creatorcontrib>Baravets, Yauhen</creatorcontrib><creatorcontrib>Podrazký, Ondřej</creatorcontrib><title>Nanocrystalline (HoxY1−x)2Ti2O7 luminophores for short- and mid-infrared lasers</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>We present a versatile sol–gel approach for low-phonon nanocrystalline (Ho
x
Y
1−x
)
2
Ti
2
O
7
,
x
= <0.01, 0.40> exhibiting luminescence within the spectral range 2000–3000 nm. The nanocrystalline structure of (Ho
x
Y
1−x
)
2
Ti
2
O
7
was studied and the effect of the composition and phonon energy on the luminescence properties was evaluated. Regular distribution of Ho
3+
ions inside the pyrochlore crystal lattice was proved leading to a regular increase of the unit cell parameter. The luminescence intensity recorded at 2025 nm reached a maximum for the composition (Ho
0.03
Y
0.96
)
2
Ti
2
O
7
. The radiative lifetime recorded at 2025 nm regularly decreased with increasing content of Ho
3+
ions inside the pyrochlore lattice from 6.32 to 0.22 ms. The phonon energy of the samples was smaller than 700 cm
−1
allowing the luminescence spectral range to be extended up to 2900 nm. Further tailoring of the chemical composition can improve the emission at 2860 nm providing a promising high thermally and chemically stable alternative to conventional fluoride or chalcogenide glasses.
Graphical Abstract
Highlights
We present a versatile sol–gel approach to preparing (Ho
x
Y
1−x
)
2
Ti
2
O
7
x
= <0.01, 0.40>.
The content of Ho
3+
ions in the lattice has a major impact on the luminescence properties.
The optimal content of Ho
3+
ions to maximize the luminescence intensity is identified.
Low phonon energy of (Ho
x
Y
1−x
)
2
Ti
2
O
7
allows the radiative transition at 2860 nm to be activated.</description><subject>Ceramics</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crystal lattices</subject><subject>Energy</subject><subject>Fluorides</subject><subject>Glass</subject><subject>Holmium</subject><subject>Infrared lasers</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Luminescence</subject><subject>Materials Science</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Original Paper: Sol–gel and hybrid materials for optical</subject><subject>Phonons</subject><subject>photonic and optoelectronic applications</subject><subject>Pyrochlores</subject><subject>Radiative lifetime</subject><subject>Science</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Unit cell</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyRWGAw3GsncTKiCihSRYVUBibL8Q-kSuNip1L6Bsw8Ik9CoEhsTPcM5zv36BByinCJAOIqIpQCKTBOIUfktN8jI8wEp2mR5vtkBCUrKAgQh-QoxiUAZCmKEXl8UK3XYRs71TR1a5Pzqe-f8fP9o79gi5rNRdJsVnXr168-2Jg4H5I4yI4mqjXJqja0bl1QwZqkUdGGeEwOnGqiPfm9Y_J0e7OYTOlsfnc_uZ5RzQR0VKArh7qIFXPOlTY3Ch3TGRal5pnSBXfWujI1RleAqRbKCsbBVSY1TmUVH5OzXe46-LeNjZ1c-k1oh5eSFTzP8ywr8sHFdi4dfIzBOrkO9UqFrUSQ39PJ3XRy6CJ_ppP9APEdFAdz-2LDX_Q_1BcAr3Nx</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Mrázek, Jan</creator><creator>Kamrádková, Soňa</creator><creator>Buršík, Jiří</creator><creator>Skála, Roman</creator><creator>Bartoň, Ivo</creator><creator>Vařák, Petr</creator><creator>Baravets, Yauhen</creator><creator>Podrazký, Ondřej</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7986-0841</orcidid></search><sort><creationdate>20230801</creationdate><title>Nanocrystalline (HoxY1−x)2Ti2O7 luminophores for short- and mid-infrared lasers</title><author>Mrázek, Jan ; Kamrádková, Soňa ; Buršík, Jiří ; Skála, Roman ; Bartoň, Ivo ; Vařák, Petr ; Baravets, Yauhen ; Podrazký, Ondřej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-71f902311b2fff9e6da1f2c5189c35ac83feef94ddcb014c7ae7230fbd4dfa5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ceramics</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crystal lattices</topic><topic>Energy</topic><topic>Fluorides</topic><topic>Glass</topic><topic>Holmium</topic><topic>Infrared lasers</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Luminescence</topic><topic>Materials Science</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Original Paper: Sol–gel and hybrid materials for optical</topic><topic>Phonons</topic><topic>photonic and optoelectronic applications</topic><topic>Pyrochlores</topic><topic>Radiative lifetime</topic><topic>Science</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mrázek, Jan</creatorcontrib><creatorcontrib>Kamrádková, Soňa</creatorcontrib><creatorcontrib>Buršík, Jiří</creatorcontrib><creatorcontrib>Skála, Roman</creatorcontrib><creatorcontrib>Bartoň, Ivo</creatorcontrib><creatorcontrib>Vařák, Petr</creatorcontrib><creatorcontrib>Baravets, Yauhen</creatorcontrib><creatorcontrib>Podrazký, Ondřej</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mrázek, Jan</au><au>Kamrádková, Soňa</au><au>Buršík, Jiří</au><au>Skála, Roman</au><au>Bartoň, Ivo</au><au>Vařák, Petr</au><au>Baravets, Yauhen</au><au>Podrazký, Ondřej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocrystalline (HoxY1−x)2Ti2O7 luminophores for short- and mid-infrared lasers</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>107</volume><issue>2</issue><spage>320</spage><epage>328</epage><pages>320-328</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>We present a versatile sol–gel approach for low-phonon nanocrystalline (Ho
x
Y
1−x
)
2
Ti
2
O
7
,
x
= <0.01, 0.40> exhibiting luminescence within the spectral range 2000–3000 nm. The nanocrystalline structure of (Ho
x
Y
1−x
)
2
Ti
2
O
7
was studied and the effect of the composition and phonon energy on the luminescence properties was evaluated. Regular distribution of Ho
3+
ions inside the pyrochlore crystal lattice was proved leading to a regular increase of the unit cell parameter. The luminescence intensity recorded at 2025 nm reached a maximum for the composition (Ho
0.03
Y
0.96
)
2
Ti
2
O
7
. The radiative lifetime recorded at 2025 nm regularly decreased with increasing content of Ho
3+
ions inside the pyrochlore lattice from 6.32 to 0.22 ms. The phonon energy of the samples was smaller than 700 cm
−1
allowing the luminescence spectral range to be extended up to 2900 nm. Further tailoring of the chemical composition can improve the emission at 2860 nm providing a promising high thermally and chemically stable alternative to conventional fluoride or chalcogenide glasses.
Graphical Abstract
Highlights
We present a versatile sol–gel approach to preparing (Ho
x
Y
1−x
)
2
Ti
2
O
7
x
= <0.01, 0.40>.
The content of Ho
3+
ions in the lattice has a major impact on the luminescence properties.
The optimal content of Ho
3+
ions to maximize the luminescence intensity is identified.
Low phonon energy of (Ho
x
Y
1−x
)
2
Ti
2
O
7
allows the radiative transition at 2860 nm to be activated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-023-06113-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7986-0841</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2023-08, Vol.107 (2), p.320-328 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_proquest_journals_2836665586 |
source | Springer Nature |
subjects | Ceramics Chemical composition Chemistry and Materials Science Composites Crystal lattices Energy Fluorides Glass Holmium Infrared lasers Inorganic Chemistry Lasers Luminescence Materials Science Nanocrystals Nanotechnology Natural Materials Optical and Electronic Materials Optical properties Original Paper: Sol–gel and hybrid materials for optical Phonons photonic and optoelectronic applications Pyrochlores Radiative lifetime Science Sol-gel processes Spectrum analysis Unit cell |
title | Nanocrystalline (HoxY1−x)2Ti2O7 luminophores for short- and mid-infrared lasers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocrystalline%20(HoxY1%E2%88%92x)2Ti2O7%20luminophores%20for%20short-%20and%20mid-infrared%20lasers&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Mr%C3%A1zek,%20Jan&rft.date=2023-08-01&rft.volume=107&rft.issue=2&rft.spage=320&rft.epage=328&rft.pages=320-328&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-023-06113-x&rft_dat=%3Cproquest_cross%3E2836665586%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-71f902311b2fff9e6da1f2c5189c35ac83feef94ddcb014c7ae7230fbd4dfa5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2836665586&rft_id=info:pmid/&rfr_iscdi=true |