Loading…
DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning
This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to su...
Saved in:
Published in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Lee, Cheolwon Yoo, Sangwook Lee, Han Na Lee, Jongha |
description | This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading. |
doi_str_mv | 10.1109/ACCESS.2023.3284892 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2837140268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10147783</ieee_id><doaj_id>oai_doaj_org_article_9ca3aaeefaab45039df2a6703e177df8</doaj_id><sourcerecordid>2837140268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3</originalsourceid><addsrcrecordid>eNpNkV9LwzAUxYsoKOon0IeAz5v50zaJb6NOHUwUpr6G2_Zm65jNTFNx397Minhfcjm5v3MTTpJcMDpmjOrrSVFMF4sxp1yMBVep0vwgOeEs1yORifzwX3-cnHfdmsZSUcrkSWJuEbdTvwsrfIcbMiGL0Nc74loSFVK4tmu6gG0g00_Y9BCaePOIYeVq4ix5fSOL5zsya2v8ioB3_XJF9o5kjuDbpl2eJUcWNh2e_56nyevd9KV4GM2f7mfFZD6qRKbDCFlWclVSqrlSusqqlGepsrTiILguS8sE5LrMATUoW5e1RECkLP6slLlEcZrMBt_awdpsffMOfmccNOZHcH5pwIem2qDRFQiItAUo04wKXVsOuaQCmZS1VdHravDaevfRYxfM2vW-jc83XAnJUsrz_ZQYpirvus6j_dvKqNkHY4ZgzD4Y8xtMpC4HqkHEfwRLpVRCfAPueIlH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837140268</pqid></control><display><type>article</type><title>DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning</title><source>IEEE Open Access Journals</source><creator>Lee, Cheolwon ; Yoo, Sangwook ; Lee, Han Na ; Lee, Jongha</creator><creatorcontrib>Lee, Cheolwon ; Yoo, Sangwook ; Lee, Han Na ; Lee, Jongha</creatorcontrib><description>This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3284892</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer vision ; Deep learning ; Digital imaging ; Erythema ; Feature extraction ; Image restoration ; Image segmentation ; Inspection ; Irradiation ; Lesions ; Reduction ; Semantic Segmentation ; Skin ; Specific gravity ; Ultraviolet radiation ; Ultraviolet sources ; UV SPF Index</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3</cites><orcidid>0000-0002-2778-2562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10147783$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lee, Cheolwon</creatorcontrib><creatorcontrib>Yoo, Sangwook</creatorcontrib><creatorcontrib>Lee, Han Na</creatorcontrib><creatorcontrib>Lee, Jongha</creatorcontrib><title>DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading.</description><subject>Computer vision</subject><subject>Deep learning</subject><subject>Digital imaging</subject><subject>Erythema</subject><subject>Feature extraction</subject><subject>Image restoration</subject><subject>Image segmentation</subject><subject>Inspection</subject><subject>Irradiation</subject><subject>Lesions</subject><subject>Reduction</subject><subject>Semantic Segmentation</subject><subject>Skin</subject><subject>Specific gravity</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet sources</subject><subject>UV SPF Index</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9LwzAUxYsoKOon0IeAz5v50zaJb6NOHUwUpr6G2_Zm65jNTFNx397Minhfcjm5v3MTTpJcMDpmjOrrSVFMF4sxp1yMBVep0vwgOeEs1yORifzwX3-cnHfdmsZSUcrkSWJuEbdTvwsrfIcbMiGL0Nc74loSFVK4tmu6gG0g00_Y9BCaePOIYeVq4ix5fSOL5zsya2v8ioB3_XJF9o5kjuDbpl2eJUcWNh2e_56nyevd9KV4GM2f7mfFZD6qRKbDCFlWclVSqrlSusqqlGepsrTiILguS8sE5LrMATUoW5e1RECkLP6slLlEcZrMBt_awdpsffMOfmccNOZHcH5pwIem2qDRFQiItAUo04wKXVsOuaQCmZS1VdHravDaevfRYxfM2vW-jc83XAnJUsrz_ZQYpirvus6j_dvKqNkHY4ZgzD4Y8xtMpC4HqkHEfwRLpVRCfAPueIlH</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Lee, Cheolwon</creator><creator>Yoo, Sangwook</creator><creator>Lee, Han Na</creator><creator>Lee, Jongha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2778-2562</orcidid></search><sort><creationdate>20230101</creationdate><title>DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning</title><author>Lee, Cheolwon ; Yoo, Sangwook ; Lee, Han Na ; Lee, Jongha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer vision</topic><topic>Deep learning</topic><topic>Digital imaging</topic><topic>Erythema</topic><topic>Feature extraction</topic><topic>Image restoration</topic><topic>Image segmentation</topic><topic>Inspection</topic><topic>Irradiation</topic><topic>Lesions</topic><topic>Reduction</topic><topic>Semantic Segmentation</topic><topic>Skin</topic><topic>Specific gravity</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet sources</topic><topic>UV SPF Index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Cheolwon</creatorcontrib><creatorcontrib>Yoo, Sangwook</creatorcontrib><creatorcontrib>Lee, Han Na</creatorcontrib><creatorcontrib>Lee, Jongha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Cheolwon</au><au>Yoo, Sangwook</au><au>Lee, Han Na</au><au>Lee, Jongha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3284892</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2778-2562</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2837140268 |
source | IEEE Open Access Journals |
subjects | Computer vision Deep learning Digital imaging Erythema Feature extraction Image restoration Image segmentation Inspection Irradiation Lesions Reduction Semantic Segmentation Skin Specific gravity Ultraviolet radiation Ultraviolet sources UV SPF Index |
title | DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepErythema:%20A%20Study%20on%20the%20Consistent%20Evaluation%20Method%20of%20UV%20SPF%20Index%20through%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Lee,%20Cheolwon&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3284892&rft_dat=%3Cproquest_ieee_%3E2837140268%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2837140268&rft_id=info:pmid/&rft_ieee_id=10147783&rfr_iscdi=true |