Loading…

DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning

This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to su...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Lee, Cheolwon, Yoo, Sangwook, Lee, Han Na, Lee, Jongha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Lee, Cheolwon
Yoo, Sangwook
Lee, Han Na
Lee, Jongha
description This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading.
doi_str_mv 10.1109/ACCESS.2023.3284892
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2837140268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10147783</ieee_id><doaj_id>oai_doaj_org_article_9ca3aaeefaab45039df2a6703e177df8</doaj_id><sourcerecordid>2837140268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3</originalsourceid><addsrcrecordid>eNpNkV9LwzAUxYsoKOon0IeAz5v50zaJb6NOHUwUpr6G2_Zm65jNTFNx397Minhfcjm5v3MTTpJcMDpmjOrrSVFMF4sxp1yMBVep0vwgOeEs1yORifzwX3-cnHfdmsZSUcrkSWJuEbdTvwsrfIcbMiGL0Nc74loSFVK4tmu6gG0g00_Y9BCaePOIYeVq4ix5fSOL5zsya2v8ioB3_XJF9o5kjuDbpl2eJUcWNh2e_56nyevd9KV4GM2f7mfFZD6qRKbDCFlWclVSqrlSusqqlGepsrTiILguS8sE5LrMATUoW5e1RECkLP6slLlEcZrMBt_awdpsffMOfmccNOZHcH5pwIem2qDRFQiItAUo04wKXVsOuaQCmZS1VdHravDaevfRYxfM2vW-jc83XAnJUsrz_ZQYpirvus6j_dvKqNkHY4ZgzD4Y8xtMpC4HqkHEfwRLpVRCfAPueIlH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837140268</pqid></control><display><type>article</type><title>DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning</title><source>IEEE Open Access Journals</source><creator>Lee, Cheolwon ; Yoo, Sangwook ; Lee, Han Na ; Lee, Jongha</creator><creatorcontrib>Lee, Cheolwon ; Yoo, Sangwook ; Lee, Han Na ; Lee, Jongha</creatorcontrib><description>This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3284892</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer vision ; Deep learning ; Digital imaging ; Erythema ; Feature extraction ; Image restoration ; Image segmentation ; Inspection ; Irradiation ; Lesions ; Reduction ; Semantic Segmentation ; Skin ; Specific gravity ; Ultraviolet radiation ; Ultraviolet sources ; UV SPF Index</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3</cites><orcidid>0000-0002-2778-2562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10147783$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lee, Cheolwon</creatorcontrib><creatorcontrib>Yoo, Sangwook</creatorcontrib><creatorcontrib>Lee, Han Na</creatorcontrib><creatorcontrib>Lee, Jongha</creatorcontrib><title>DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading.</description><subject>Computer vision</subject><subject>Deep learning</subject><subject>Digital imaging</subject><subject>Erythema</subject><subject>Feature extraction</subject><subject>Image restoration</subject><subject>Image segmentation</subject><subject>Inspection</subject><subject>Irradiation</subject><subject>Lesions</subject><subject>Reduction</subject><subject>Semantic Segmentation</subject><subject>Skin</subject><subject>Specific gravity</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet sources</subject><subject>UV SPF Index</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9LwzAUxYsoKOon0IeAz5v50zaJb6NOHUwUpr6G2_Zm65jNTFNx397Minhfcjm5v3MTTpJcMDpmjOrrSVFMF4sxp1yMBVep0vwgOeEs1yORifzwX3-cnHfdmsZSUcrkSWJuEbdTvwsrfIcbMiGL0Nc74loSFVK4tmu6gG0g00_Y9BCaePOIYeVq4ix5fSOL5zsya2v8ioB3_XJF9o5kjuDbpl2eJUcWNh2e_56nyevd9KV4GM2f7mfFZD6qRKbDCFlWclVSqrlSusqqlGepsrTiILguS8sE5LrMATUoW5e1RECkLP6slLlEcZrMBt_awdpsffMOfmccNOZHcH5pwIem2qDRFQiItAUo04wKXVsOuaQCmZS1VdHravDaevfRYxfM2vW-jc83XAnJUsrz_ZQYpirvus6j_dvKqNkHY4ZgzD4Y8xtMpC4HqkHEfwRLpVRCfAPueIlH</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Lee, Cheolwon</creator><creator>Yoo, Sangwook</creator><creator>Lee, Han Na</creator><creator>Lee, Jongha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2778-2562</orcidid></search><sort><creationdate>20230101</creationdate><title>DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning</title><author>Lee, Cheolwon ; Yoo, Sangwook ; Lee, Han Na ; Lee, Jongha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer vision</topic><topic>Deep learning</topic><topic>Digital imaging</topic><topic>Erythema</topic><topic>Feature extraction</topic><topic>Image restoration</topic><topic>Image segmentation</topic><topic>Inspection</topic><topic>Irradiation</topic><topic>Lesions</topic><topic>Reduction</topic><topic>Semantic Segmentation</topic><topic>Skin</topic><topic>Specific gravity</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet sources</topic><topic>UV SPF Index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Cheolwon</creatorcontrib><creatorcontrib>Yoo, Sangwook</creatorcontrib><creatorcontrib>Lee, Han Na</creatorcontrib><creatorcontrib>Lee, Jongha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Cheolwon</au><au>Yoo, Sangwook</au><au>Lee, Han Na</au><au>Lee, Jongha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This study presents a deep learning-based approach for consistent Sun Protection Factor (SPF) grading by quantifying skin erythema. Despite strict international standards, the current human-based Minimum Erythema Dose (MED) determination method for SPF evaluation suffers from inconsistency due to subjective criteria and the visual characteristics of erythema's large variance. We propose DeepErythema, a novel method that uses erythema quantification for MED determination. The proposed method comprises pre-processing methods, a deep learning segmentation model, and post-processing methods. The UV irradiation area pointing is a pre-processing method that accurately detects the inspection area as a UV irradiated port, while Median Gradation Reduction eliminates the gradation that arises due to the digital image collection environment. The deep learning segmentation model parts introduce a methodology for improving performance using various feature extractors and methodologies like SeLu, Reverse Attention Gate, and MixedLoss. For post-processing, Perspective Transform Rectangle Restoration restores a distorted inspection area, and Relative Density Evaluation calculates a density score to consider skin characteristics and tone. We verified that utilizing the DeepErythema score in the UV SPF MED Evaluation (USME) dataset reduced the distribution of human-based MED decisions from 36 to 9 in the experimental results. This reduction in MED decision scope leads to improved consistency in SPF Index grading. Overall, the study contributes to the development of an objective and consistent evaluation method for SPF grading.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3284892</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2778-2562</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2837140268
source IEEE Open Access Journals
subjects Computer vision
Deep learning
Digital imaging
Erythema
Feature extraction
Image restoration
Image segmentation
Inspection
Irradiation
Lesions
Reduction
Semantic Segmentation
Skin
Specific gravity
Ultraviolet radiation
Ultraviolet sources
UV SPF Index
title DeepErythema: A Study on the Consistent Evaluation Method of UV SPF Index through Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepErythema:%20A%20Study%20on%20the%20Consistent%20Evaluation%20Method%20of%20UV%20SPF%20Index%20through%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Lee,%20Cheolwon&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3284892&rft_dat=%3Cproquest_ieee_%3E2837140268%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-e15b28b0092889c5c42548f0c2a329bbf13a69b6ae9a8fdbd7eaee01216b767e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2837140268&rft_id=info:pmid/&rft_ieee_id=10147783&rfr_iscdi=true